关于 2D$ $\mathbb F_p$-Selberg 积分的说明

Alexander Varchenko
{"title":"关于 2D$ $\\mathbb F_p$-Selberg 积分的说明","authors":"Alexander Varchenko","doi":"arxiv-2409.08442","DOIUrl":null,"url":null,"abstract":"We prove a two-dimensional $\\mathbb F_p$-Selberg integral formula, in which\nthe two-dimensional $\\mathbb F_p$-Selberg integral $\\bar S(a,b,c;l_1,l_2)$\ndepends on positive integer parameters $a,b,c$, $l_1,l_2$ and is an element of\nthe finite field $\\mathbb F_p$ with odd prime number $p$ of elements. The\nformula is motivated by the analogy between multidimensional hypergeometric\nsolutions of the KZ equations and polynomial solutions of the same equations\nreduced modulo $p$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on $2D$ $\\\\mathbb F_p$-Selberg integrals\",\"authors\":\"Alexander Varchenko\",\"doi\":\"arxiv-2409.08442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a two-dimensional $\\\\mathbb F_p$-Selberg integral formula, in which\\nthe two-dimensional $\\\\mathbb F_p$-Selberg integral $\\\\bar S(a,b,c;l_1,l_2)$\\ndepends on positive integer parameters $a,b,c$, $l_1,l_2$ and is an element of\\nthe finite field $\\\\mathbb F_p$ with odd prime number $p$ of elements. The\\nformula is motivated by the analogy between multidimensional hypergeometric\\nsolutions of the KZ equations and polynomial solutions of the same equations\\nreduced modulo $p$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个二维 $\mathbb F_p$-Selberg 积分公式,其中二维 $\mathbb F_p$-Selberg 积分 $\bar S(a,b,c;l_1,l_2)$ 取决于正整数参数 $a,b,c$,$l_1,l_2$,并且是具有奇素数 $p$ 元素的有限域 $\mathbb F_p$ 的元素。这个公式的灵感来自于 KZ 方程的多维超几何解与同类方程的多项式解以 $p$ 为模减的类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on $2D$ $\mathbb F_p$-Selberg integrals
We prove a two-dimensional $\mathbb F_p$-Selberg integral formula, in which the two-dimensional $\mathbb F_p$-Selberg integral $\bar S(a,b,c;l_1,l_2)$ depends on positive integer parameters $a,b,c$, $l_1,l_2$ and is an element of the finite field $\mathbb F_p$ with odd prime number $p$ of elements. The formula is motivated by the analogy between multidimensional hypergeometric solutions of the KZ equations and polynomial solutions of the same equations reduced modulo $p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信