计算有多个最大模根的整数多项式

Artūras Dubickas, Min Sha
{"title":"计算有多个最大模根的整数多项式","authors":"Artūras Dubickas, Min Sha","doi":"arxiv-2409.08625","DOIUrl":null,"url":null,"abstract":"In this paper, for positive integers $H$ and $k \\leq n$, we obtain some\nestimates on the cardinality of the set of monic integer polynomials of degree\n$n$ and height bounded by $H$ with exactly $k$ roots of maximal modulus. These\ninclude lower and upper bounds in terms of $H$ for fixed $k$ and $n$. We also\ncount reducible and irreducible polynomials in that set separately. Our results\nimply, for instance, that the number of monic integer irreducible polynomials\nof degree $n$ and height at most $H$ whose all $n$ roots have equal moduli is\napproximately $2H$ for odd $n$, while for even $n$ there are more than\n$H^{n/8}$ of such polynomials.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting integer polynomials with several roots of maximal modulus\",\"authors\":\"Artūras Dubickas, Min Sha\",\"doi\":\"arxiv-2409.08625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for positive integers $H$ and $k \\\\leq n$, we obtain some\\nestimates on the cardinality of the set of monic integer polynomials of degree\\n$n$ and height bounded by $H$ with exactly $k$ roots of maximal modulus. These\\ninclude lower and upper bounds in terms of $H$ for fixed $k$ and $n$. We also\\ncount reducible and irreducible polynomials in that set separately. Our results\\nimply, for instance, that the number of monic integer irreducible polynomials\\nof degree $n$ and height at most $H$ whose all $n$ roots have equal moduli is\\napproximately $2H$ for odd $n$, while for even $n$ there are more than\\n$H^{n/8}$ of such polynomials.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,对于正整数 $H$ 和 $k \leq n$,我们得到了阶数为$n$、高为 $H$、最大模正好为 $k$ 的单整多项式集合的一些估计值。其中包括在固定 $k$ 和 $n$ 条件下,以 $H$ 为单位的下界和上界。我们还分别计算了该集合中的可还原多项式和不可还原多项式。例如,我们的结果表明,对于奇数$n$,所有$n$根的模数相等的度数为$n$、高最多为$H$的单整不可还原多项式的数目约为$2H$,而对于偶数$n$,此类多项式的数目超过$H^{n/8}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting integer polynomials with several roots of maximal modulus
In this paper, for positive integers $H$ and $k \leq n$, we obtain some estimates on the cardinality of the set of monic integer polynomials of degree $n$ and height bounded by $H$ with exactly $k$ roots of maximal modulus. These include lower and upper bounds in terms of $H$ for fixed $k$ and $n$. We also count reducible and irreducible polynomials in that set separately. Our results imply, for instance, that the number of monic integer irreducible polynomials of degree $n$ and height at most $H$ whose all $n$ roots have equal moduli is approximately $2H$ for odd $n$, while for even $n$ there are more than $H^{n/8}$ of such polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信