有限域上的无性变种与交换内态代数:理论与算法

Jonas Bergström, Valentijn Karemaker, Stefano Marseglia
{"title":"有限域上的无性变种与交换内态代数:理论与算法","authors":"Jonas Bergström, Valentijn Karemaker, Stefano Marseglia","doi":"arxiv-2409.08865","DOIUrl":null,"url":null,"abstract":"We give a categorical description of all abelian varieties with commutative\nendomorphism ring over a finite field with $q=p^a$ elements in a fixed isogeny\nclass in terms of pairs consisting of a fractional $\\mathbb Z[\\pi,q/\\pi]$-ideal\nand a fractional $W\\otimes_{\\mathbb Z_p} \\mathbb Z_p[\\pi,q/\\pi]$-ideal, with\n$\\pi$ the Frobenius endomorphism and $W$ the ring of integers in an unramified\nextension of $\\mathbb Q_p$ of degree $a$. The latter ideal should be compatible\nat $p$ with the former and stable under the action of a semilinear Frobenius\n(and Verschiebung) operator; it will be the Dieudonn\\'e module of the\ncorresponding abelian variety. Using this categorical description we create\neffective algorithms to compute isomorphism classes of these objects and we\nproduce many new examples exhibiting exotic patterns.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian varieties over finite fields with commutative endomorphism algebra: theory and algorithms\",\"authors\":\"Jonas Bergström, Valentijn Karemaker, Stefano Marseglia\",\"doi\":\"arxiv-2409.08865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a categorical description of all abelian varieties with commutative\\nendomorphism ring over a finite field with $q=p^a$ elements in a fixed isogeny\\nclass in terms of pairs consisting of a fractional $\\\\mathbb Z[\\\\pi,q/\\\\pi]$-ideal\\nand a fractional $W\\\\otimes_{\\\\mathbb Z_p} \\\\mathbb Z_p[\\\\pi,q/\\\\pi]$-ideal, with\\n$\\\\pi$ the Frobenius endomorphism and $W$ the ring of integers in an unramified\\nextension of $\\\\mathbb Q_p$ of degree $a$. The latter ideal should be compatible\\nat $p$ with the former and stable under the action of a semilinear Frobenius\\n(and Verschiebung) operator; it will be the Dieudonn\\\\'e module of the\\ncorresponding abelian variety. Using this categorical description we create\\neffective algorithms to compute isomorphism classes of these objects and we\\nproduce many new examples exhibiting exotic patterns.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用分数 $\mathbb Z[\pi,q/\pi]$-ideal 和分数 $W\otimes_{\mathbb Z_p} 组成的对,对所有在有限域上具有换元内定形环且在固定等元环中具有 $q=p^a$ 元素的无性变种进行分类描述。\ideal,其中$\pi$是弗罗贝尼斯内构,$W$是阶数为$a$的$\mathbb Q_p$的无ramified扩展中的整数环。后一个理想应在 $p$ 与前一个理想相容,并在半线性弗罗贝尼斯(和 Verschiebung)算子的作用下稳定;它将是相应的无性杂交的 Dieudonn\'e 模块。利用这种分类描述,我们创建了计算这些对象同构类的有效算法,并产生了许多展示奇异模式的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian varieties over finite fields with commutative endomorphism algebra: theory and algorithms
We give a categorical description of all abelian varieties with commutative endomorphism ring over a finite field with $q=p^a$ elements in a fixed isogeny class in terms of pairs consisting of a fractional $\mathbb Z[\pi,q/\pi]$-ideal and a fractional $W\otimes_{\mathbb Z_p} \mathbb Z_p[\pi,q/\pi]$-ideal, with $\pi$ the Frobenius endomorphism and $W$ the ring of integers in an unramified extension of $\mathbb Q_p$ of degree $a$. The latter ideal should be compatible at $p$ with the former and stable under the action of a semilinear Frobenius (and Verschiebung) operator; it will be the Dieudonn\'e module of the corresponding abelian variety. Using this categorical description we create effective algorithms to compute isomorphism classes of these objects and we produce many new examples exhibiting exotic patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信