根式扩展中的质数拆分和共指除数

Hanson Smith
{"title":"根式扩展中的质数拆分和共指除数","authors":"Hanson Smith","doi":"arxiv-2409.08911","DOIUrl":null,"url":null,"abstract":"We explicitly describe the splitting of odd integral primes in the radical\nextension $\\mathbb{Q}(\\sqrt[n]{a})$, where $x^n-a$ is an irreducible polynomial\nin $\\mathbb{Z}[x]$. Our motivation is to classify common index divisors, the\nprimes whose splitting prevents the existence of a power integral basis for the\nring of integers of $\\mathbb{Q}(\\sqrt[n]{a})$. Among other results, we show\nthat if $p$ is such a prime, even or otherwise, then $p\\mid n$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prime Splitting and Common Index Divisors in Radical Extensions\",\"authors\":\"Hanson Smith\",\"doi\":\"arxiv-2409.08911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explicitly describe the splitting of odd integral primes in the radical\\nextension $\\\\mathbb{Q}(\\\\sqrt[n]{a})$, where $x^n-a$ is an irreducible polynomial\\nin $\\\\mathbb{Z}[x]$. Our motivation is to classify common index divisors, the\\nprimes whose splitting prevents the existence of a power integral basis for the\\nring of integers of $\\\\mathbb{Q}(\\\\sqrt[n]{a})$. Among other results, we show\\nthat if $p$ is such a prime, even or otherwise, then $p\\\\mid n$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们明确地描述了根扩展 $\mathbb{Q}(\sqrt[n]{a})$ 中奇数积分素数的分裂,其中 $x^n-a$ 是 $\mathbb{Z}[x]$ 中的不可约多项式。我们的动机是对共指数除数进行分类,即那些因其分裂而无法存在 $\mathbb{Q}(\sqrt[n]{a})$ 的整数ering 的幂积分基础的素数。在其他结果中,我们证明了如果 $p$ 是这样一个素数,不管是偶数还是其他素数,那么 $p\mid n$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime Splitting and Common Index Divisors in Radical Extensions
We explicitly describe the splitting of odd integral primes in the radical extension $\mathbb{Q}(\sqrt[n]{a})$, where $x^n-a$ is an irreducible polynomial in $\mathbb{Z}[x]$. Our motivation is to classify common index divisors, the primes whose splitting prevents the existence of a power integral basis for the ring of integers of $\mathbb{Q}(\sqrt[n]{a})$. Among other results, we show that if $p$ is such a prime, even or otherwise, then $p\mid n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信