l$-adic常模残差上变定理

Bruno Kahn
{"title":"l$-adic常模残差上变定理","authors":"Bruno Kahn","doi":"arxiv-2409.10248","DOIUrl":null,"url":null,"abstract":"We show that the continuous \\'etale cohomology groups\n$H^n_{\\mathrm{cont}}(X,\\mathbf{Q}_l(n))$ of smooth varieties $X$ over a finite\nfield $k$ are spanned as $\\mathbf{Q}_l$-vector spaces by the $n$-th Milnor\n$K$-sheaf locally for the Zariski topology, for all $n\\ge 0$. Here $l$ is a\nprime invertible in $k$. This is the first general unconditional result towards\nthe conjectures of arXiv:math/9801017 (math.AG) which put together the Tate and\nthe Beilinson conjectures relative to algebraic cycles on smooth projective\n$k$-varieties.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An $l$-adic norm residue epimorphism theorem\",\"authors\":\"Bruno Kahn\",\"doi\":\"arxiv-2409.10248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the continuous \\\\'etale cohomology groups\\n$H^n_{\\\\mathrm{cont}}(X,\\\\mathbf{Q}_l(n))$ of smooth varieties $X$ over a finite\\nfield $k$ are spanned as $\\\\mathbf{Q}_l$-vector spaces by the $n$-th Milnor\\n$K$-sheaf locally for the Zariski topology, for all $n\\\\ge 0$. Here $l$ is a\\nprime invertible in $k$. This is the first general unconditional result towards\\nthe conjectures of arXiv:math/9801017 (math.AG) which put together the Tate and\\nthe Beilinson conjectures relative to algebraic cycles on smooth projective\\n$k$-varieties.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在有限域 $k$ 上光滑 varieties $X$ 的连续同调群$H^n_{\mathrm{cont}}(X,\mathbf{Q}_l(n))$ 作为 $\mathbf{Q}_l$-vector 空间,在所有 $n\ge 0$ 的情况下,都被 Zariski 拓扑的局部 $n$-th Milnor$K$-sheaf 所跨越。这里的 $l$ 是 $k$ 中的可逆prime。这是针对 arXiv:math/9801017 (math.AG)猜想的第一个一般性无条件结果,该猜想将相对于光滑射影$k$变量上代数循环的泰特猜想和贝林森猜想结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An $l$-adic norm residue epimorphism theorem
We show that the continuous \'etale cohomology groups $H^n_{\mathrm{cont}}(X,\mathbf{Q}_l(n))$ of smooth varieties $X$ over a finite field $k$ are spanned as $\mathbf{Q}_l$-vector spaces by the $n$-th Milnor $K$-sheaf locally for the Zariski topology, for all $n\ge 0$. Here $l$ is a prime invertible in $k$. This is the first general unconditional result towards the conjectures of arXiv:math/9801017 (math.AG) which put together the Tate and the Beilinson conjectures relative to algebraic cycles on smooth projective $k$-varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信