素数上双线性多项式平均数的点收敛性

Ben Krause, Hamed Mousavi, Terence Tao, Joni Teräväinen
{"title":"素数上双线性多项式平均数的点收敛性","authors":"Ben Krause, Hamed Mousavi, Terence Tao, Joni Teräväinen","doi":"arxiv-2409.10510","DOIUrl":null,"url":null,"abstract":"We show that on a $\\sigma$-finite measure preserving system $X = (X,\\nu, T)$,\nthe non-conventional ergodic averages $$ \\mathbb{E}_{n \\in [N]} \\Lambda(n)\nf(T^n x) g(T^{P(n)} x)$$ converge pointwise almost everywhere for $f \\in\nL^{p_1}(X)$, $g \\in L^{p_2}(X)$, and $1/p_1 + 1/p_2 \\leq 1$, where $P$ is a\npolynomial with integer coefficients of degree at least $2$. This had\npreviously been established with the von Mangoldt weight $\\Lambda$ replaced by\nthe constant weight $1$ by the first and third authors with Mirek, and by the\nM\\\"obius weight $\\mu$ by the fourth author. The proof is based on combining\ntools from both of these papers, together with several Gowers norm and\npolynomial averaging operator estimates on approximants to the von Mangoldt\nfunction of ''Cram\\'er'' and ''Heath-Brown'' type.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise convergence of bilinear polynomial averages over the primes\",\"authors\":\"Ben Krause, Hamed Mousavi, Terence Tao, Joni Teräväinen\",\"doi\":\"arxiv-2409.10510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that on a $\\\\sigma$-finite measure preserving system $X = (X,\\\\nu, T)$,\\nthe non-conventional ergodic averages $$ \\\\mathbb{E}_{n \\\\in [N]} \\\\Lambda(n)\\nf(T^n x) g(T^{P(n)} x)$$ converge pointwise almost everywhere for $f \\\\in\\nL^{p_1}(X)$, $g \\\\in L^{p_2}(X)$, and $1/p_1 + 1/p_2 \\\\leq 1$, where $P$ is a\\npolynomial with integer coefficients of degree at least $2$. This had\\npreviously been established with the von Mangoldt weight $\\\\Lambda$ replaced by\\nthe constant weight $1$ by the first and third authors with Mirek, and by the\\nM\\\\\\\"obius weight $\\\\mu$ by the fourth author. The proof is based on combining\\ntools from both of these papers, together with several Gowers norm and\\npolynomial averaging operator estimates on approximants to the von Mangoldt\\nfunction of ''Cram\\\\'er'' and ''Heath-Brown'' type.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在$\sigma$无限度量保全系统$X = (X,\nu, T)$上,非常规遍历平均数$$ \mathbb{E}_{n \in [N]}\Lambda(n)f(T^n x) g(T^{P(n)} x)$$ 对于 $f \in L^{p_1}(X)$, $g \in L^{p_2}(X)$, and $1/p_1 + 1/p_2 \leq 1$, 其中 $P$ 是阶数至少为 2$ 的整数系数的偶项式,几乎无处不收敛。在此之前,第一位和第三位作者与米雷克一起用常数权$1$代替了冯-曼戈尔德权$\Lambda$,第四位作者用莫比乌斯权$\mu$代替了冯-曼戈尔德权$\Lambda$。证明的基础是结合这两篇论文中的工具,以及关于''Cram\'er'' 和 ''Heath-Brown''类型的冯-曼戈尔德函数近似值的几个高斯规范和多项式平均算子估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise convergence of bilinear polynomial averages over the primes
We show that on a $\sigma$-finite measure preserving system $X = (X,\nu, T)$, the non-conventional ergodic averages $$ \mathbb{E}_{n \in [N]} \Lambda(n) f(T^n x) g(T^{P(n)} x)$$ converge pointwise almost everywhere for $f \in L^{p_1}(X)$, $g \in L^{p_2}(X)$, and $1/p_1 + 1/p_2 \leq 1$, where $P$ is a polynomial with integer coefficients of degree at least $2$. This had previously been established with the von Mangoldt weight $\Lambda$ replaced by the constant weight $1$ by the first and third authors with Mirek, and by the M\"obius weight $\mu$ by the fourth author. The proof is based on combining tools from both of these papers, together with several Gowers norm and polynomial averaging operator estimates on approximants to the von Mangoldt function of ''Cram\'er'' and ''Heath-Brown'' type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信