ω(n)$在无h$和满h$数上的分布

Sourabhashis Das, Wentang Kuo, Yu-Ru Liu
{"title":"ω(n)$在无h$和满h$数上的分布","authors":"Sourabhashis Das, Wentang Kuo, Yu-Ru Liu","doi":"arxiv-2409.10430","DOIUrl":null,"url":null,"abstract":"Let $\\omega(n)$ denote the number of distinct prime factors of a natural\nnumber $n$. In 1917, Hardy and Ramanujan proved that $\\omega(n)$ has normal\norder $\\log \\log n$ over naturals. In this work, we establish the first and the\nsecond moments of $\\omega(n)$ over $h$-free and $h$-full numbers using a new\ncounting argument and prove that $\\omega(n)$ has normal order $\\log \\log n$\nover these subsets.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of $ω(n)$ over $h$-free and $h$-full numbers\",\"authors\":\"Sourabhashis Das, Wentang Kuo, Yu-Ru Liu\",\"doi\":\"arxiv-2409.10430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\omega(n)$ denote the number of distinct prime factors of a natural\\nnumber $n$. In 1917, Hardy and Ramanujan proved that $\\\\omega(n)$ has normal\\norder $\\\\log \\\\log n$ over naturals. In this work, we establish the first and the\\nsecond moments of $\\\\omega(n)$ over $h$-free and $h$-full numbers using a new\\ncounting argument and prove that $\\\\omega(n)$ has normal order $\\\\log \\\\log n$\\nover these subsets.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\omega(n)$ 表示自然数 $n$ 的独特素因子数。1917年,哈代和拉马努扬证明了$\omega(n)$在自然数上具有法阶$\log \log n$。在这项工作中,我们用一个新的计数论证建立了$h$无素数和$h$全素数的$\omega(n)$的第一矩和第二矩,并证明了$\omega(n)$在这些子集上具有常阶$\log \log n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of $ω(n)$ over $h$-free and $h$-full numbers
Let $\omega(n)$ denote the number of distinct prime factors of a natural number $n$. In 1917, Hardy and Ramanujan proved that $\omega(n)$ has normal order $\log \log n$ over naturals. In this work, we establish the first and the second moments of $\omega(n)$ over $h$-free and $h$-full numbers using a new counting argument and prove that $\omega(n)$ has normal order $\log \log n$ over these subsets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信