乔拉猜想和兰道-西格尔零点

Mikko Jaskari, Stelios Sachpazis
{"title":"乔拉猜想和兰道-西格尔零点","authors":"Mikko Jaskari, Stelios Sachpazis","doi":"arxiv-2409.10663","DOIUrl":null,"url":null,"abstract":"Let $k\\geqslant 2$ be an integer and let $\\lambda$ be the Liouville function.\nGiven $k$ non-negative distinct integers $h_1,\\ldots,h_k$, the Chowla\nconjecture claims that $\\sum_{n\\leqslant\nx}\\lambda(n+h_1)\\cdots\\lambda(n+h_k)=o(x)$. An unconditional answer to this\nconjecture is yet to be found, and in this paper, we take a conditional\napproach. More precisely, we establish a bound for the sums $\\sum_{n\\leqslant\nx}\\lambda(n+h_1)\\cdots\\lambda(n+h_k)$ under the existence of Landau-Siegel\nzeroes. Our work constitutes an improvement over the previous related results\nof Germ\\'{a}n and K\\'{a}tai, Chinis, and Tao and Ter\\\"av\\\"ainen.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Chowla conjecture and Landau-Siegel zeroes\",\"authors\":\"Mikko Jaskari, Stelios Sachpazis\",\"doi\":\"arxiv-2409.10663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k\\\\geqslant 2$ be an integer and let $\\\\lambda$ be the Liouville function.\\nGiven $k$ non-negative distinct integers $h_1,\\\\ldots,h_k$, the Chowla\\nconjecture claims that $\\\\sum_{n\\\\leqslant\\nx}\\\\lambda(n+h_1)\\\\cdots\\\\lambda(n+h_k)=o(x)$. An unconditional answer to this\\nconjecture is yet to be found, and in this paper, we take a conditional\\napproach. More precisely, we establish a bound for the sums $\\\\sum_{n\\\\leqslant\\nx}\\\\lambda(n+h_1)\\\\cdots\\\\lambda(n+h_k)$ under the existence of Landau-Siegel\\nzeroes. Our work constitutes an improvement over the previous related results\\nof Germ\\\\'{a}n and K\\\\'{a}tai, Chinis, and Tao and Ter\\\\\\\"av\\\\\\\"ainen.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定 $k$ 非负的整数 $h_1,\ldots,h_k$,Chowlaconjecture 声称 $\sum_{n\leqslantx}\lambda(n+h_1)\cdots\lambda(n+h_k)=o(x)$ 。这个猜想的无条件答案尚未找到,在本文中,我们将采取有条件的方法。更准确地说,我们建立了一个兰道-西格尔零点存在下的和 $\sum_{n\leqslantx}\lambda(n+h_1)\cdots\lambda(n+h_k)$ 的约束。我们的工作是对之前格尔木和克尔泰、奇尼斯、陶和特拉维夫的相关结果的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chowla conjecture and Landau-Siegel zeroes
Let $k\geqslant 2$ be an integer and let $\lambda$ be the Liouville function. Given $k$ non-negative distinct integers $h_1,\ldots,h_k$, the Chowla conjecture claims that $\sum_{n\leqslant x}\lambda(n+h_1)\cdots\lambda(n+h_k)=o(x)$. An unconditional answer to this conjecture is yet to be found, and in this paper, we take a conditional approach. More precisely, we establish a bound for the sums $\sum_{n\leqslant x}\lambda(n+h_1)\cdots\lambda(n+h_k)$ under the existence of Landau-Siegel zeroes. Our work constitutes an improvement over the previous related results of Germ\'{a}n and K\'{a}tai, Chinis, and Tao and Ter\"av\"ainen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信