避开子网格的二次多项式积分零点

Lenny Fukshansky, Sehun Jeong
{"title":"避开子网格的二次多项式积分零点","authors":"Lenny Fukshansky, Sehun Jeong","doi":"arxiv-2409.10867","DOIUrl":null,"url":null,"abstract":"Assuming an integral quadratic polynomial with nonsingular quadratic part has\na nontrivial zero on an integer lattice outside of a union of finite-index\nsublattices, we prove that there exists such a zero of bounded norm and provide\nan explicit bound. This is a contribution related to the celebrated theorem of\nCassels on small-height zeros of quadratic forms, which builds on some previous\nwork in this area. We also demonstrate an application of these results to the\nproblem of effective distribution of angles between vectors in the integer\nlattice.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral zeros of quadratic polynomials avoiding sublattices\",\"authors\":\"Lenny Fukshansky, Sehun Jeong\",\"doi\":\"arxiv-2409.10867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming an integral quadratic polynomial with nonsingular quadratic part has\\na nontrivial zero on an integer lattice outside of a union of finite-index\\nsublattices, we prove that there exists such a zero of bounded norm and provide\\nan explicit bound. This is a contribution related to the celebrated theorem of\\nCassels on small-height zeros of quadratic forms, which builds on some previous\\nwork in this area. We also demonstrate an application of these results to the\\nproblem of effective distribution of angles between vectors in the integer\\nlattice.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假定具有非奇异二次部分的积分二次多项式在有限指数子网格联盟之外的整数网格上有一个非奇异零点,我们证明存在这样一个有界规范的零点,并提供了一个显式约束。这是与卡塞尔斯关于二次型的小高零点的著名定理相关的贡献,它建立在这一领域之前的一些工作之上。我们还证明了这些结果在整数网格中向量间角的有效分布问题上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral zeros of quadratic polynomials avoiding sublattices
Assuming an integral quadratic polynomial with nonsingular quadratic part has a nontrivial zero on an integer lattice outside of a union of finite-index sublattices, we prove that there exists such a zero of bounded norm and provide an explicit bound. This is a contribution related to the celebrated theorem of Cassels on small-height zeros of quadratic forms, which builds on some previous work in this area. We also demonstrate an application of these results to the problem of effective distribution of angles between vectors in the integer lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信