{"title":"双曲凯勒-西格尔方程具有连续剖面的游波","authors":"Quentin Griette, Pierre Magal, Min Zhao","doi":"10.1017/s0956792524000305","DOIUrl":null,"url":null,"abstract":"This work describes a hyperbolic model for cell-cell repulsion with population dynamics. We consider the pressure produced by a population of cells to describe their motion. We assume that cells try to avoid crowded areas and prefer locally empty spaces far away from the carrying capacity. Here, our main goal is to prove the existence of travelling waves with continuous profiles. This article complements our previous results about sharp travelling waves. We conclude the paper with numerical simulations of the PDE problem, illustrating such a result. An application to wound healing also illustrates the importance of travelling waves with a continuous and discontinuous profile.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Travelling waves with continuous profile for hyperbolic Keller-Segel equation\",\"authors\":\"Quentin Griette, Pierre Magal, Min Zhao\",\"doi\":\"10.1017/s0956792524000305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a hyperbolic model for cell-cell repulsion with population dynamics. We consider the pressure produced by a population of cells to describe their motion. We assume that cells try to avoid crowded areas and prefer locally empty spaces far away from the carrying capacity. Here, our main goal is to prove the existence of travelling waves with continuous profiles. This article complements our previous results about sharp travelling waves. We conclude the paper with numerical simulations of the PDE problem, illustrating such a result. An application to wound healing also illustrates the importance of travelling waves with a continuous and discontinuous profile.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792524000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Travelling waves with continuous profile for hyperbolic Keller-Segel equation
This work describes a hyperbolic model for cell-cell repulsion with population dynamics. We consider the pressure produced by a population of cells to describe their motion. We assume that cells try to avoid crowded areas and prefer locally empty spaces far away from the carrying capacity. Here, our main goal is to prove the existence of travelling waves with continuous profiles. This article complements our previous results about sharp travelling waves. We conclude the paper with numerical simulations of the PDE problem, illustrating such a result. An application to wound healing also illustrates the importance of travelling waves with a continuous and discontinuous profile.