以同时产生和消耗信号的 T 细胞动力学为模型的趋化系统中的稳定问题

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
Youshan Tao, Michael Winkler
{"title":"以同时产生和消耗信号的 T 细胞动力学为模型的趋化系统中的稳定问题","authors":"Youshan Tao, Michael Winkler","doi":"10.1017/s0956792524000299","DOIUrl":null,"url":null,"abstract":"In a smoothly bounded domain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline1.png\"/> <jats:tex-math> $\\Omega \\subset \\mathbb{R}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline2.png\"/> <jats:tex-math> $n\\ge 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this manuscript considers the homogeneous Neumann boundary problem for the chemotaxis system<jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0956792524000299_eqnU1.png\"/> <jats:tex-math> \\begin{eqnarray*} \\left \\{ \\begin{array}{l} u_t = \\Delta u - \\nabla \\cdot (u\\nabla v), \\\\[5pt] v_t = \\Delta v + u - \\alpha uv, \\end{array} \\right . \\end{eqnarray*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>with parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline3.png\"/> <jats:tex-math> $\\alpha \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and with coincident production and uptake of attractants, as recently emphasized by Dallaston et al. as relevant for the understanding of T-cell dynamics. It is shown that there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline4.png\"/> <jats:tex-math> $\\delta _\\star =\\delta _\\star (n)\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline5.png\"/> <jats:tex-math> $\\alpha \\ge \\frac{1}{\\delta _\\star }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and for any suitably regular initial data satisfying <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline6.png\"/> <jats:tex-math> $v(\\cdot, 0)\\le \\delta _\\star$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this problem admits a unique classical solution that stabilizes to the constant equilibrium <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000299_inline7.png\"/> <jats:tex-math> $(\\frac{1}{|\\Omega |}\\int _\\Omega u(\\cdot, 0), \\, \\frac{1}{\\alpha })$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in the large time limit.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization in a chemotaxis system modelling T-cell dynamics with simultaneous production and consumption of signals\",\"authors\":\"Youshan Tao, Michael Winkler\",\"doi\":\"10.1017/s0956792524000299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a smoothly bounded domain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline1.png\\\"/> <jats:tex-math> $\\\\Omega \\\\subset \\\\mathbb{R}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline2.png\\\"/> <jats:tex-math> $n\\\\ge 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this manuscript considers the homogeneous Neumann boundary problem for the chemotaxis system<jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0956792524000299_eqnU1.png\\\"/> <jats:tex-math> \\\\begin{eqnarray*} \\\\left \\\\{ \\\\begin{array}{l} u_t = \\\\Delta u - \\\\nabla \\\\cdot (u\\\\nabla v), \\\\\\\\[5pt] v_t = \\\\Delta v + u - \\\\alpha uv, \\\\end{array} \\\\right . \\\\end{eqnarray*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>with parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline3.png\\\"/> <jats:tex-math> $\\\\alpha \\\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and with coincident production and uptake of attractants, as recently emphasized by Dallaston et al. as relevant for the understanding of T-cell dynamics. It is shown that there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline4.png\\\"/> <jats:tex-math> $\\\\delta _\\\\star =\\\\delta _\\\\star (n)\\\\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that for any given <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline5.png\\\"/> <jats:tex-math> $\\\\alpha \\\\ge \\\\frac{1}{\\\\delta _\\\\star }$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and for any suitably regular initial data satisfying <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline6.png\\\"/> <jats:tex-math> $v(\\\\cdot, 0)\\\\le \\\\delta _\\\\star$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this problem admits a unique classical solution that stabilizes to the constant equilibrium <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000299_inline7.png\\\"/> <jats:tex-math> $(\\\\frac{1}{|\\\\Omega |}\\\\int _\\\\Omega u(\\\\cdot, 0), \\\\, \\\\frac{1}{\\\\alpha })$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in the large time limit.\",\"PeriodicalId\":51046,\"journal\":{\"name\":\"European Journal of Applied Mathematics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792524000299\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000299","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在一个光滑有界域 $Omega \subset \mathbb{R}^n$ , $n\ge 1$ 中,本手稿考虑了趋化系统的同构 Neumann 边界问题 \begin{eqnarray*}\u_t = \Delta u - \nabla \cdot (u\nabla v), \[5pt] v_t = \Delta v + u - \alpha uv, \end{array} .\右边.\end{eqnarray*} 参数为 $\alpha \gt 0$,并且吸引子的产生和吸收是重合的,正如达拉斯顿等人最近强调的那样,这与理解 T 细胞动力学相关。研究表明,存在$\delta _\star =\delta _\star (n)\gt 0$,这样对于任何给定的$\alpha \ge \frac{1}\{delta _\star }$和任何满足$v(\cdot、0)\le \delta _\star$, 这个问题有一个唯一的经典解,它在大时间极限内稳定在恒定均衡 $(\frac{1}{|\Omega |}\int _\Omega u(\cdot, 0), \, \frac{1}{\alpha })$ 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization in a chemotaxis system modelling T-cell dynamics with simultaneous production and consumption of signals
In a smoothly bounded domain $\Omega \subset \mathbb{R}^n$ , $n\ge 1$ , this manuscript considers the homogeneous Neumann boundary problem for the chemotaxis system \begin{eqnarray*} \left \{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v), \\[5pt] v_t = \Delta v + u - \alpha uv, \end{array} \right . \end{eqnarray*} with parameter $\alpha \gt 0$ and with coincident production and uptake of attractants, as recently emphasized by Dallaston et al. as relevant for the understanding of T-cell dynamics. It is shown that there exists $\delta _\star =\delta _\star (n)\gt 0$ such that for any given $\alpha \ge \frac{1}{\delta _\star }$ and for any suitably regular initial data satisfying $v(\cdot, 0)\le \delta _\star$ , this problem admits a unique classical solution that stabilizes to the constant equilibrium $(\frac{1}{|\Omega |}\int _\Omega u(\cdot, 0), \, \frac{1}{\alpha })$ in the large time limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信