{"title":"导电传输特征函数的局部几何特性及其应用","authors":"Huaian Diao, Xiaoxu Fei, Hongyu Liu","doi":"10.1017/s0956792524000287","DOIUrl":null,"url":null,"abstract":"The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000287_inline1.png\"/> <jats:tex-math> $\\mathbb{R}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000287_inline2.png\"/> <jats:tex-math> $n=2,3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local geometric properties of conductive transmission eigenfunctions and applications\",\"authors\":\"Huaian Diao, Xiaoxu Fei, Hongyu Liu\",\"doi\":\"10.1017/s0956792524000287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000287_inline1.png\\\"/> <jats:tex-math> $\\\\mathbb{R}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000287_inline2.png\\\"/> <jats:tex-math> $n=2,3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792524000287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Local geometric properties of conductive transmission eigenfunctions and applications
The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in $\mathbb{R}^n$ , $n=2,3$ . Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.