导电传输特征函数的局部几何特性及其应用

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Huaian Diao, Xiaoxu Fei, Hongyu Liu
{"title":"导电传输特征函数的局部几何特性及其应用","authors":"Huaian Diao, Xiaoxu Fei, Hongyu Liu","doi":"10.1017/s0956792524000287","DOIUrl":null,"url":null,"abstract":"The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000287_inline1.png\"/> <jats:tex-math> $\\mathbb{R}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000287_inline2.png\"/> <jats:tex-math> $n=2,3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local geometric properties of conductive transmission eigenfunctions and applications\",\"authors\":\"Huaian Diao, Xiaoxu Fei, Hongyu Liu\",\"doi\":\"10.1017/s0956792524000287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000287_inline1.png\\\"/> <jats:tex-math> $\\\\mathbb{R}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0956792524000287_inline2.png\\\"/> <jats:tex-math> $n=2,3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792524000287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文有两个目的。首先,我们证明与导电边界条件相关的部分数据传输特征函数在 $\mathbb{R}^n$ 中的多面体或圆锥角周围局部消失,$n=2,3$。其次,我们将光谱特性应用于几何反向散射问题,即通过一次远场测量确定导电散射体的形状及其边界阻抗参数,而与介质含量无关。我们建立了几个新的独特恢复结果。这些结果在两个方向上扩展了 [26] 中的相关结果:首先,我们考虑了一种更普遍的几何设置,即同时研究多面体角和圆锥角,而在 [26] 中只涉及多面体角;其次,我们大大放宽了 [26] 中的正则性假设,这对上述几何反问题特别有用。我们开发了新颖的技术策略来实现这些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local geometric properties of conductive transmission eigenfunctions and applications
The purpose of the paper is twofold. First, we show that partial-data transmission eigenfunctions associated with a conductive boundary condition vanish locally around a polyhedral or conic corner in $\mathbb{R}^n$ , $n=2,3$ . Second, we apply the spectral property to the geometrical inverse scattering problem of determining the shape as well as its boundary impedance parameter of a conductive scatterer, independent of its medium content, by a single far-field measurement. We establish several new unique recovery results. The results extend the relevant ones in [26] in two directions: first, we consider a more general geometric setup where both polyhedral and conic corners are investigated, whereas in [26] only polyhedral corners are concerned; second, we significantly relax the regularity assumptions in [26] which is particularly useful for the geometrical inverse problem mentioned above. We develop novel technical strategies to achieve these new results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信