志村变子图上的赫克特征值系统

Stefan Reppen
{"title":"志村变子图上的赫克特征值系统","authors":"Stefan Reppen","doi":"arxiv-2409.11720","DOIUrl":null,"url":null,"abstract":"We show that the systems of Hecke eigenvalues that appear in the coherent\ncohomology with coefficients in automorphic line bundles of any mod $p$ abelian\ntype compact Shimura variety at hyperspecial level are the same as those\nappearing in any Hecke-equivariant closed subscheme. We also prove analogous\nresults for noncompact Shimura varieties or nonclosed subschemes, such as\nEkedahl-Oort strata, length strata and central leaves.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems of Hecke eigenvalues on subschemes of Shimura varieties\",\"authors\":\"Stefan Reppen\",\"doi\":\"arxiv-2409.11720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the systems of Hecke eigenvalues that appear in the coherent\\ncohomology with coefficients in automorphic line bundles of any mod $p$ abelian\\ntype compact Shimura variety at hyperspecial level are the same as those\\nappearing in any Hecke-equivariant closed subscheme. We also prove analogous\\nresults for noncompact Shimura varieties or nonclosed subschemes, such as\\nEkedahl-Oort strata, length strata and central leaves.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在任何模 $p$ 非整型紧凑志村变的超特级上,以自形线束为系数出现在相干同调中的赫克特征值系统,与出现在任何赫克方程封闭子方案中的赫克特征值系统是相同的。我们还证明了非紧凑志村变或非封闭子方案(如埃克达尔-奥尔特层、长度层和中心叶)的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems of Hecke eigenvalues on subschemes of Shimura varieties
We show that the systems of Hecke eigenvalues that appear in the coherent cohomology with coefficients in automorphic line bundles of any mod $p$ abelian type compact Shimura variety at hyperspecial level are the same as those appearing in any Hecke-equivariant closed subscheme. We also prove analogous results for noncompact Shimura varieties or nonclosed subschemes, such as Ekedahl-Oort strata, length strata and central leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信