Diophantine 稳定性和二阶项

Carlo Pagano, Efthymios Sofos
{"title":"Diophantine 稳定性和二阶项","authors":"Carlo Pagano, Efthymios Sofos","doi":"arxiv-2409.12144","DOIUrl":null,"url":null,"abstract":"We establish a Galois-theoretic trichotomy governing Diophantine stability\nfor genus $0$ curves. We use it to prove that the curve associated to the\nHilbert symbol is Diophantine stable with probability $1$. Our asymptotic\nformula for the second order term exhibits strong bias towards instability.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine stability and second order terms\",\"authors\":\"Carlo Pagano, Efthymios Sofos\",\"doi\":\"arxiv-2409.12144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a Galois-theoretic trichotomy governing Diophantine stability\\nfor genus $0$ curves. We use it to prove that the curve associated to the\\nHilbert symbol is Diophantine stable with probability $1$. Our asymptotic\\nformula for the second order term exhibits strong bias towards instability.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个伽罗瓦理论的三分法,用以控制 0$ 属曲线的戴奥芬汀稳定性。我们用它来证明与希尔伯特符号相关的曲线是戴奥芬汀稳定的,概率为 1$$。我们的二阶项渐近公式表现出强烈的不稳定性倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine stability and second order terms
We establish a Galois-theoretic trichotomy governing Diophantine stability for genus $0$ curves. We use it to prove that the curve associated to the Hilbert symbol is Diophantine stable with probability $1$. Our asymptotic formula for the second order term exhibits strong bias towards instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信