{"title":"关于渐近和本质托普利兹和汉克尔积分算子","authors":"C. Bellavita, G. Stylogiannis","doi":"arxiv-2409.10014","DOIUrl":null,"url":null,"abstract":"In this article we consider the generalized integral operators acting on the\nHilbert space $H^2$. We characterize when these operators are uniform, strong\nand weakly asymptotic Toeplitz and Hankel operators. Moreover we completely\ndescribe the symbols $g$ for which these operators are essentially Hankel and\nessentially Toeplitz.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On asymptotic and essential Toeplitz and Hankel integral operator\",\"authors\":\"C. Bellavita, G. Stylogiannis\",\"doi\":\"arxiv-2409.10014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we consider the generalized integral operators acting on the\\nHilbert space $H^2$. We characterize when these operators are uniform, strong\\nand weakly asymptotic Toeplitz and Hankel operators. Moreover we completely\\ndescribe the symbols $g$ for which these operators are essentially Hankel and\\nessentially Toeplitz.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On asymptotic and essential Toeplitz and Hankel integral operator
In this article we consider the generalized integral operators acting on the
Hilbert space $H^2$. We characterize when these operators are uniform, strong
and weakly asymptotic Toeplitz and Hankel operators. Moreover we completely
describe the symbols $g$ for which these operators are essentially Hankel and
essentially Toeplitz.