关于渐近和本质托普利兹和汉克尔积分算子

C. Bellavita, G. Stylogiannis
{"title":"关于渐近和本质托普利兹和汉克尔积分算子","authors":"C. Bellavita, G. Stylogiannis","doi":"arxiv-2409.10014","DOIUrl":null,"url":null,"abstract":"In this article we consider the generalized integral operators acting on the\nHilbert space $H^2$. We characterize when these operators are uniform, strong\nand weakly asymptotic Toeplitz and Hankel operators. Moreover we completely\ndescribe the symbols $g$ for which these operators are essentially Hankel and\nessentially Toeplitz.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On asymptotic and essential Toeplitz and Hankel integral operator\",\"authors\":\"C. Bellavita, G. Stylogiannis\",\"doi\":\"arxiv-2409.10014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we consider the generalized integral operators acting on the\\nHilbert space $H^2$. We characterize when these operators are uniform, strong\\nand weakly asymptotic Toeplitz and Hankel operators. Moreover we completely\\ndescribe the symbols $g$ for which these operators are essentially Hankel and\\nessentially Toeplitz.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了作用于希尔伯特空间 $H^2$ 的广义积分算子。我们描述了这些算子是均匀、强和弱渐近托普利兹算子和汉克尔算子时的特征。此外,我们还完整地描述了这些算子本质上是 Hankel 算子和本质上是 Toeplitz 算子的符号 $g$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asymptotic and essential Toeplitz and Hankel integral operator
In this article we consider the generalized integral operators acting on the Hilbert space $H^2$. We characterize when these operators are uniform, strong and weakly asymptotic Toeplitz and Hankel operators. Moreover we completely describe the symbols $g$ for which these operators are essentially Hankel and essentially Toeplitz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信