{"title":"Co3O4 和 NiO 纳米棒阵列中的磁场增强型光电化学分水技术","authors":"Jyoti Yadav, Lakshay Bhardwaj, J.P. Singh","doi":"10.1016/j.mtener.2024.101682","DOIUrl":null,"url":null,"abstract":"Effective charge separation is crucial for improving the sensitivity of photoelectrochemical studies. Here, we provide an immense magnetic field-based electron spin polarization approach for an efficient charge carrier separation. We have fabricated NiO and CoO thin film and nanorod arrays by electron beam evaporation glancing angle method followed by annealing in a two-zone furnace. The photoelectrochemical performance was investigated for NiO and CoO samples in the presence and absence of a magnetic field. The NiO and CoO nanorods array samples exhibit better absorption compared with the thin film samples. The CoO and NiO nanorod arrays showed the highest photocurrent density of 0.12 and 0.55 mA/cm in a magnetic field. The superior photoelectrochemical response of NiO and CoO nanorods in a magnetic field could be ascribed to the limitation of non-radiative recombination of carriers manipulated by Lorentz force and spin polarization. Furthermore, the electrochemical impedance spectra of NiO and CoO nanorod arrays in a magnetic field show the least charge transfer resistance. This study sheds light on the interaction process between external fields and radiative/non-radiative recombination of manipulating carriers. Thus, the application of a magnetic field presents an efficient and versatile approach to enhance the performance of photoelectrodes in solar water splitting.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays\",\"authors\":\"Jyoti Yadav, Lakshay Bhardwaj, J.P. Singh\",\"doi\":\"10.1016/j.mtener.2024.101682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective charge separation is crucial for improving the sensitivity of photoelectrochemical studies. Here, we provide an immense magnetic field-based electron spin polarization approach for an efficient charge carrier separation. We have fabricated NiO and CoO thin film and nanorod arrays by electron beam evaporation glancing angle method followed by annealing in a two-zone furnace. The photoelectrochemical performance was investigated for NiO and CoO samples in the presence and absence of a magnetic field. The NiO and CoO nanorods array samples exhibit better absorption compared with the thin film samples. The CoO and NiO nanorod arrays showed the highest photocurrent density of 0.12 and 0.55 mA/cm in a magnetic field. The superior photoelectrochemical response of NiO and CoO nanorods in a magnetic field could be ascribed to the limitation of non-radiative recombination of carriers manipulated by Lorentz force and spin polarization. Furthermore, the electrochemical impedance spectra of NiO and CoO nanorod arrays in a magnetic field show the least charge transfer resistance. This study sheds light on the interaction process between external fields and radiative/non-radiative recombination of manipulating carriers. Thus, the application of a magnetic field presents an efficient and versatile approach to enhance the performance of photoelectrodes in solar water splitting.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101682\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101682","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays
Effective charge separation is crucial for improving the sensitivity of photoelectrochemical studies. Here, we provide an immense magnetic field-based electron spin polarization approach for an efficient charge carrier separation. We have fabricated NiO and CoO thin film and nanorod arrays by electron beam evaporation glancing angle method followed by annealing in a two-zone furnace. The photoelectrochemical performance was investigated for NiO and CoO samples in the presence and absence of a magnetic field. The NiO and CoO nanorods array samples exhibit better absorption compared with the thin film samples. The CoO and NiO nanorod arrays showed the highest photocurrent density of 0.12 and 0.55 mA/cm in a magnetic field. The superior photoelectrochemical response of NiO and CoO nanorods in a magnetic field could be ascribed to the limitation of non-radiative recombination of carriers manipulated by Lorentz force and spin polarization. Furthermore, the electrochemical impedance spectra of NiO and CoO nanorod arrays in a magnetic field show the least charge transfer resistance. This study sheds light on the interaction process between external fields and radiative/non-radiative recombination of manipulating carriers. Thus, the application of a magnetic field presents an efficient and versatile approach to enhance the performance of photoelectrodes in solar water splitting.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials