使用柔性陶瓷隔板延长铝充电电池寿命

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yifan Liu, Dong Li, Xuan Wang, Yuehong Xie, Aqun Zheng, Lilong Xiong
{"title":"使用柔性陶瓷隔板延长铝充电电池寿命","authors":"Yifan Liu, Dong Li, Xuan Wang, Yuehong Xie, Aqun Zheng, Lilong Xiong","doi":"10.1016/j.mtener.2024.101679","DOIUrl":null,"url":null,"abstract":"Rechargeable aluminum batteries (RABs) are attracting significant attention for their high theoretical capacity and abundant reserves. However, the poor mechanical performance of glass fiber (GF) separators and the formation of Al dendrite severely hinder the practical cycle life of these batteries. Herein, a flexible ceramic separator was developed with simple coating technique, effectively improving the cycling stability of RABs. Compared with the commercial GF separator, this flexible ceramic separator has less thickness and superior electrolyte wettability, resulting in improved interfacial compatibility and minimized interfacial resistance. Moreover, its exceptional flexibility and toughness (stress of 39.34 MPa) coupled with uniform nanopore structure, which can effectively resist the penetration of dendrites. As expected, this ceramic flexible separator facilitates stable cycling of the symmetric battery for over 1762 h at 2 mA/cm and 2 mAh/cm. It also permits the pouch Al//flake graphite full battery to achieve a coulombic efficiency of up to 90% even after 115 cycles. Apparently, this work developed the simple separator manufacturing strategy that provides an effective method to improve the cycling stability of RABs and extends the application to other types of batteries.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"77 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prolonging rechargeable aluminum batteries life with flexible ceramic separator\",\"authors\":\"Yifan Liu, Dong Li, Xuan Wang, Yuehong Xie, Aqun Zheng, Lilong Xiong\",\"doi\":\"10.1016/j.mtener.2024.101679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable aluminum batteries (RABs) are attracting significant attention for their high theoretical capacity and abundant reserves. However, the poor mechanical performance of glass fiber (GF) separators and the formation of Al dendrite severely hinder the practical cycle life of these batteries. Herein, a flexible ceramic separator was developed with simple coating technique, effectively improving the cycling stability of RABs. Compared with the commercial GF separator, this flexible ceramic separator has less thickness and superior electrolyte wettability, resulting in improved interfacial compatibility and minimized interfacial resistance. Moreover, its exceptional flexibility and toughness (stress of 39.34 MPa) coupled with uniform nanopore structure, which can effectively resist the penetration of dendrites. As expected, this ceramic flexible separator facilitates stable cycling of the symmetric battery for over 1762 h at 2 mA/cm and 2 mAh/cm. It also permits the pouch Al//flake graphite full battery to achieve a coulombic efficiency of up to 90% even after 115 cycles. Apparently, this work developed the simple separator manufacturing strategy that provides an effective method to improve the cycling stability of RABs and extends the application to other types of batteries.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101679\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电铝电池(RAB)因其理论容量高、储量丰富而备受关注。然而,玻璃纤维(GF)隔膜的机械性能差以及铝枝晶的形成严重阻碍了这些电池的实际循环寿命。在此,我们利用简单的涂层技术开发了一种柔性陶瓷隔膜,有效提高了 RAB 电池的循环稳定性。与商用 GF 隔膜相比,这种柔性陶瓷隔膜的厚度更小,电解质润湿性更好,从而提高了界面兼容性,将界面电阻降至最低。此外,它还具有优异的柔韧性和韧性(应力为 39.34 兆帕),再加上均匀的纳米孔结构,可有效抵御树枝状物质的渗透。正如预期的那样,这种陶瓷柔性隔膜有助于对称电池在 2 mA/cm 和 2 mAh/cm 的条件下稳定循环超过 1762 小时。它还使铝/片状石墨全袋电池在循环 115 次后仍能达到高达 90% 的库仑效率。显然,这项工作开发出了简单的隔膜制造策略,为提高 RAB 的循环稳定性提供了有效方法,并将其应用扩展到了其他类型的电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prolonging rechargeable aluminum batteries life with flexible ceramic separator
Rechargeable aluminum batteries (RABs) are attracting significant attention for their high theoretical capacity and abundant reserves. However, the poor mechanical performance of glass fiber (GF) separators and the formation of Al dendrite severely hinder the practical cycle life of these batteries. Herein, a flexible ceramic separator was developed with simple coating technique, effectively improving the cycling stability of RABs. Compared with the commercial GF separator, this flexible ceramic separator has less thickness and superior electrolyte wettability, resulting in improved interfacial compatibility and minimized interfacial resistance. Moreover, its exceptional flexibility and toughness (stress of 39.34 MPa) coupled with uniform nanopore structure, which can effectively resist the penetration of dendrites. As expected, this ceramic flexible separator facilitates stable cycling of the symmetric battery for over 1762 h at 2 mA/cm and 2 mAh/cm. It also permits the pouch Al//flake graphite full battery to achieve a coulombic efficiency of up to 90% even after 115 cycles. Apparently, this work developed the simple separator manufacturing strategy that provides an effective method to improve the cycling stability of RABs and extends the application to other types of batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信