{"title":"分子动力学模拟揭示 γ 相 Fe-Cr 合金的塑性变形机理","authors":"Peng Peng and Wensheng Lai","doi":"10.1088/1361-651x/ad78f0","DOIUrl":null,"url":null,"abstract":"Due to their outstanding mechanical properties, anti-corrosion properties, and anti-irradiation swelling properties, Fe–Cr alloys have been fully improved and developed for nuclear energy applications as structural materials. To ensure the performance stability of γ-phase Fe–Cr alloys, the present study adopted molecular dynamics (MD) simulations to explore the plastic deformation mechanism of these alloys. The slip model was constructed, and the generalised stacking fault energy (GSFE) and Peierls–Nabarro (P–N) equations were solved, revealing that {110}<111> is the preferentially activated slip system. The twinning model was constructed and the generalised plane fault energy was solved, demonstrating that twinning is preferred over slipping in the {112}<111> system. The above findings are also verified through MD simulations in which Fe–Cr specimens are stretched along the [100] direction. In addition, in the 15 at.%–25 at.% Cr range, an increase in the Cr content has a negative effect on slip but a positive effect on twin formation.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations\",\"authors\":\"Peng Peng and Wensheng Lai\",\"doi\":\"10.1088/1361-651x/ad78f0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their outstanding mechanical properties, anti-corrosion properties, and anti-irradiation swelling properties, Fe–Cr alloys have been fully improved and developed for nuclear energy applications as structural materials. To ensure the performance stability of γ-phase Fe–Cr alloys, the present study adopted molecular dynamics (MD) simulations to explore the plastic deformation mechanism of these alloys. The slip model was constructed, and the generalised stacking fault energy (GSFE) and Peierls–Nabarro (P–N) equations were solved, revealing that {110}<111> is the preferentially activated slip system. The twinning model was constructed and the generalised plane fault energy was solved, demonstrating that twinning is preferred over slipping in the {112}<111> system. The above findings are also verified through MD simulations in which Fe–Cr specimens are stretched along the [100] direction. In addition, in the 15 at.%–25 at.% Cr range, an increase in the Cr content has a negative effect on slip but a positive effect on twin formation.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad78f0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad78f0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations
Due to their outstanding mechanical properties, anti-corrosion properties, and anti-irradiation swelling properties, Fe–Cr alloys have been fully improved and developed for nuclear energy applications as structural materials. To ensure the performance stability of γ-phase Fe–Cr alloys, the present study adopted molecular dynamics (MD) simulations to explore the plastic deformation mechanism of these alloys. The slip model was constructed, and the generalised stacking fault energy (GSFE) and Peierls–Nabarro (P–N) equations were solved, revealing that {110}<111> is the preferentially activated slip system. The twinning model was constructed and the generalised plane fault energy was solved, demonstrating that twinning is preferred over slipping in the {112}<111> system. The above findings are also verified through MD simulations in which Fe–Cr specimens are stretched along the [100] direction. In addition, in the 15 at.%–25 at.% Cr range, an increase in the Cr content has a negative effect on slip but a positive effect on twin formation.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.