带状态延迟的脉冲演化方程的半流可微分性

IF 1.9 3区 数学 Q1 MATHEMATICS
Weifeng Ma, Yongxiang Li
{"title":"带状态延迟的脉冲演化方程的半流可微分性","authors":"Weifeng Ma, Yongxiang Li","doi":"10.1007/s12346-024-01134-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the impulsive evolution equation with state-dependent delay by the theory of operator semigroup in Banach spaces. Under conditions that both nonlinearity and impulsive functions are Lipschitz continuous, we obtain the existence and uniqueness results of mild solution. Furthermore, we prove the differentiability of a semi-flow defined by a continuously differentiable solution operator under the appropriate condition.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiability of Semi-Flow for Impulsive Evolution Equation with State-Dependent Delay\",\"authors\":\"Weifeng Ma, Yongxiang Li\",\"doi\":\"10.1007/s12346-024-01134-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the impulsive evolution equation with state-dependent delay by the theory of operator semigroup in Banach spaces. Under conditions that both nonlinearity and impulsive functions are Lipschitz continuous, we obtain the existence and uniqueness results of mild solution. Furthermore, we prove the differentiability of a semi-flow defined by a continuously differentiable solution operator under the appropriate condition.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01134-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01134-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用巴拿赫空间中的算子半群理论研究了具有状态相关延迟的脉冲演化方程。在非线性和脉冲函数均为 Lipschitz 连续的条件下,我们得到了温和解的存在性和唯一性结果。此外,我们还在适当条件下证明了连续可微解算子定义的半流的可微性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiability of Semi-Flow for Impulsive Evolution Equation with State-Dependent Delay

In this paper, we study the impulsive evolution equation with state-dependent delay by the theory of operator semigroup in Banach spaces. Under conditions that both nonlinearity and impulsive functions are Lipschitz continuous, we obtain the existence and uniqueness results of mild solution. Furthermore, we prove the differentiability of a semi-flow defined by a continuously differentiable solution operator under the appropriate condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信