非密集域上分数演化系统的近似可控性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vikram Singh, Renu Chaudhary, Umesh Kumar, Sandeep Kumar
{"title":"非密集域上分数演化系统的近似可控性","authors":"Vikram Singh, Renu Chaudhary, Umesh Kumar, Sandeep Kumar","doi":"10.1007/s12346-024-01135-4","DOIUrl":null,"url":null,"abstract":"<p>This article explores the existence and approximate controllability of integral solutions for Hilfer fractional evolution equations in a non-dense domain. Leveraging the well-known generalized Banach contraction theorem, we establish both the existence and uniqueness of the integral solution. Furthermore, we adopt a sequential approach to derive results related to approximate controllability, without relying on the compactness of semigroups or the uniform boundedness of nonlinear functions. To validate our findings, we present and discuss an illustrative example.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Controllability of Fractional Evolution System on Non-Dense Domain\",\"authors\":\"Vikram Singh, Renu Chaudhary, Umesh Kumar, Sandeep Kumar\",\"doi\":\"10.1007/s12346-024-01135-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article explores the existence and approximate controllability of integral solutions for Hilfer fractional evolution equations in a non-dense domain. Leveraging the well-known generalized Banach contraction theorem, we establish both the existence and uniqueness of the integral solution. Furthermore, we adopt a sequential approach to derive results related to approximate controllability, without relying on the compactness of semigroups or the uniform boundedness of nonlinear functions. To validate our findings, we present and discuss an illustrative example.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01135-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01135-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了非密集域中希尔费分数演化方程积分解的存在性和近似可控性。利用著名的广义巴拿赫收缩定理,我们建立了积分解的存在性和唯一性。此外,我们还采用了一种序列方法来推导与近似可控性相关的结果,而不依赖于半群的紧凑性或非线性函数的均匀有界性。为了验证我们的发现,我们提出并讨论了一个示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximate Controllability of Fractional Evolution System on Non-Dense Domain

Approximate Controllability of Fractional Evolution System on Non-Dense Domain

This article explores the existence and approximate controllability of integral solutions for Hilfer fractional evolution equations in a non-dense domain. Leveraging the well-known generalized Banach contraction theorem, we establish both the existence and uniqueness of the integral solution. Furthermore, we adopt a sequential approach to derive results related to approximate controllability, without relying on the compactness of semigroups or the uniform boundedness of nonlinear functions. To validate our findings, we present and discuss an illustrative example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信