G. Russo, G. Franchetti, M. Giovannozzi, E. H. Maclean
{"title":"应用于大型强子对撞机光束测量的非稳态信号谐波分析","authors":"G. Russo, G. Franchetti, M. Giovannozzi, E. H. Maclean","doi":"10.1103/physrevaccelbeams.27.094001","DOIUrl":null,"url":null,"abstract":"Harmonic analysis has provided powerful tools to accurately determine the tune from turn-by-turn data originating from numerical simulations or beam measurements in circular accelerators and storage rings. Methods that have been developed since the 1990s are suitable for stationary signals, i.e., time series whose properties do not vary with time and are represented by stationary signals. However, it is common experience that accelerator physics is a rich source of time series in which the signal amplitude varies over time. Furthermore, the properties of the amplitude variation of the signal often contain essential information about the phenomena under consideration. In this paper, a novel approach is presented, suitable for determining the tune of a nonstationary signal, which is based on the use of the Hilbert transform. The accuracy of the proposed methods is assessed in detail, and an application to the analysis of beam data collected at the CERN Large Hadron Collider is presented and discussed in detail.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"49 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic analysis of nonstationary signals with application to LHC beam measurements\",\"authors\":\"G. Russo, G. Franchetti, M. Giovannozzi, E. H. Maclean\",\"doi\":\"10.1103/physrevaccelbeams.27.094001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harmonic analysis has provided powerful tools to accurately determine the tune from turn-by-turn data originating from numerical simulations or beam measurements in circular accelerators and storage rings. Methods that have been developed since the 1990s are suitable for stationary signals, i.e., time series whose properties do not vary with time and are represented by stationary signals. However, it is common experience that accelerator physics is a rich source of time series in which the signal amplitude varies over time. Furthermore, the properties of the amplitude variation of the signal often contain essential information about the phenomena under consideration. In this paper, a novel approach is presented, suitable for determining the tune of a nonstationary signal, which is based on the use of the Hilbert transform. The accuracy of the proposed methods is assessed in detail, and an application to the analysis of beam data collected at the CERN Large Hadron Collider is presented and discussed in detail.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.094001\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.094001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Harmonic analysis of nonstationary signals with application to LHC beam measurements
Harmonic analysis has provided powerful tools to accurately determine the tune from turn-by-turn data originating from numerical simulations or beam measurements in circular accelerators and storage rings. Methods that have been developed since the 1990s are suitable for stationary signals, i.e., time series whose properties do not vary with time and are represented by stationary signals. However, it is common experience that accelerator physics is a rich source of time series in which the signal amplitude varies over time. Furthermore, the properties of the amplitude variation of the signal often contain essential information about the phenomena under consideration. In this paper, a novel approach is presented, suitable for determining the tune of a nonstationary signal, which is based on the use of the Hilbert transform. The accuracy of the proposed methods is assessed in detail, and an application to the analysis of beam data collected at the CERN Large Hadron Collider is presented and discussed in detail.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.