海上平台板结构振动防护综合设计方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ziwei Deng, Xuchen Jia, Zijian Li, Xu Sun, Fuzhen Pang, Baocheng Zhang
{"title":"海上平台板结构振动防护综合设计方法","authors":"Ziwei Deng, Xuchen Jia, Zijian Li, Xu Sun, Fuzhen Pang, Baocheng Zhang","doi":"10.1177/14750902241271865","DOIUrl":null,"url":null,"abstract":"The paper integrates the modal avoidance method, pedestal design method, and dynamic vibration absorber theory to investigate vibration control technology for offshore platform plate structures. We develop an integrated design method for vibration suppression by controlling the vibration excitation load, vibration transmission, and vibration energy dissipation. Firstly, a modal avoidance design is implemented to suppress vibration transmission along the propagation path of the plate structure. Subsequently, pedestal optimization is conducted for pedestal structure to attenuate vibration excitation at the input end. Finally, dynamic vibration absorber theory is employed to control dominant vibration frequency responses further and achieve multi-target vibration control. Case simulation results demonstrate that the integrated design method reduces the acceleration vibrations level at 113.75, 145.61, and 153 Hz, and this method could guide multi-objective vibration control in offshore platform plate structures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated design method for protection against vibration of offshore platform plate structure\",\"authors\":\"Ziwei Deng, Xuchen Jia, Zijian Li, Xu Sun, Fuzhen Pang, Baocheng Zhang\",\"doi\":\"10.1177/14750902241271865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper integrates the modal avoidance method, pedestal design method, and dynamic vibration absorber theory to investigate vibration control technology for offshore platform plate structures. We develop an integrated design method for vibration suppression by controlling the vibration excitation load, vibration transmission, and vibration energy dissipation. Firstly, a modal avoidance design is implemented to suppress vibration transmission along the propagation path of the plate structure. Subsequently, pedestal optimization is conducted for pedestal structure to attenuate vibration excitation at the input end. Finally, dynamic vibration absorber theory is employed to control dominant vibration frequency responses further and achieve multi-target vibration control. Case simulation results demonstrate that the integrated design method reduces the acceleration vibrations level at 113.75, 145.61, and 153 Hz, and this method could guide multi-objective vibration control in offshore platform plate structures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14750902241271865\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241271865","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文综合了模态规避方法、基座设计方法和动态减震器理论,研究了海上平台板结构的振动控制技术。我们通过控制振动激振载荷、振动传递和振动耗能,开发了一种综合的振动抑制设计方法。首先,采用模态规避设计来抑制振动沿板结构传播路径的传递。随后,对基座结构进行基座优化,以减弱输入端的振动激励。最后,采用动态吸振器理论进一步控制主要振动频率响应,实现多目标振动控制。案例模拟结果表明,综合设计方法降低了 113.75、145.61 和 153 Hz 的加速度振动水平,该方法可指导海上平台板结构的多目标振动控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated design method for protection against vibration of offshore platform plate structure
The paper integrates the modal avoidance method, pedestal design method, and dynamic vibration absorber theory to investigate vibration control technology for offshore platform plate structures. We develop an integrated design method for vibration suppression by controlling the vibration excitation load, vibration transmission, and vibration energy dissipation. Firstly, a modal avoidance design is implemented to suppress vibration transmission along the propagation path of the plate structure. Subsequently, pedestal optimization is conducted for pedestal structure to attenuate vibration excitation at the input end. Finally, dynamic vibration absorber theory is employed to control dominant vibration frequency responses further and achieve multi-target vibration control. Case simulation results demonstrate that the integrated design method reduces the acceleration vibrations level at 113.75, 145.61, and 153 Hz, and this method could guide multi-objective vibration control in offshore platform plate structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信