Gidado M. J., Ahmad Anas Nagoor Gunny, Subash C. B. Gopinath, Noor Hasyierah Mohd Salleh, Sunil Pareek, Kunasundari Balakrishnan
{"title":"研究疏水性深共晶水包油型纳米乳液对收获后技术中细胞膜降解和球孢子菌抑制的影响","authors":"Gidado M. J., Ahmad Anas Nagoor Gunny, Subash C. B. Gopinath, Noor Hasyierah Mohd Salleh, Sunil Pareek, Kunasundari Balakrishnan","doi":"10.1007/s11947-024-03587-7","DOIUrl":null,"url":null,"abstract":"<p>This study examines the effects of a hydrophobic deep eutectic oil-in-water nanoemulsion (HyDEN) on the cell membrane degradation and inhibition of <i>Colletotrichum gloeosporioides</i>. By analyzing post-treatment cell membrane morphology, we gain insights into the efficacy and mechanisms of action of antifungal agents. Significant changes such as disruption, collapse, wrinkling, and lysis were observed in the external morphology of <i>C. gloeosporioides</i> treated with HyDEN. When comparing control and treatment groups, HyDEN demonstrated more pronounced disruption and greater mycelial growth inhibition than Globus 5.5. HyDEN also effectively inhibited spore germination compared to Globus 5.5. Tests on intracellular ion leakage showed that HyDEN caused higher conductivity, indicating significant membrane disruption. Additionally, HyDEN led to a greater release of soluble sugars due to membrane damage compared to Globus 5.5. These findings suggest that HyDEN is a promising antifungal strategy, effectively disrupting cell wall and membrane functionality, and inhibiting fungal growth.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"29 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Impact of Hydrophobic Deep Eutectic Oil-in-Water Nanoemulsion on Cell Membrane Degradation and Inhibition of C. gloeosporioides in Postharvest Technology\",\"authors\":\"Gidado M. J., Ahmad Anas Nagoor Gunny, Subash C. B. Gopinath, Noor Hasyierah Mohd Salleh, Sunil Pareek, Kunasundari Balakrishnan\",\"doi\":\"10.1007/s11947-024-03587-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the effects of a hydrophobic deep eutectic oil-in-water nanoemulsion (HyDEN) on the cell membrane degradation and inhibition of <i>Colletotrichum gloeosporioides</i>. By analyzing post-treatment cell membrane morphology, we gain insights into the efficacy and mechanisms of action of antifungal agents. Significant changes such as disruption, collapse, wrinkling, and lysis were observed in the external morphology of <i>C. gloeosporioides</i> treated with HyDEN. When comparing control and treatment groups, HyDEN demonstrated more pronounced disruption and greater mycelial growth inhibition than Globus 5.5. HyDEN also effectively inhibited spore germination compared to Globus 5.5. Tests on intracellular ion leakage showed that HyDEN caused higher conductivity, indicating significant membrane disruption. Additionally, HyDEN led to a greater release of soluble sugars due to membrane damage compared to Globus 5.5. These findings suggest that HyDEN is a promising antifungal strategy, effectively disrupting cell wall and membrane functionality, and inhibiting fungal growth.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":562,\"journal\":{\"name\":\"Food and Bioprocess Technology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioprocess Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11947-024-03587-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03587-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Investigating the Impact of Hydrophobic Deep Eutectic Oil-in-Water Nanoemulsion on Cell Membrane Degradation and Inhibition of C. gloeosporioides in Postharvest Technology
This study examines the effects of a hydrophobic deep eutectic oil-in-water nanoemulsion (HyDEN) on the cell membrane degradation and inhibition of Colletotrichum gloeosporioides. By analyzing post-treatment cell membrane morphology, we gain insights into the efficacy and mechanisms of action of antifungal agents. Significant changes such as disruption, collapse, wrinkling, and lysis were observed in the external morphology of C. gloeosporioides treated with HyDEN. When comparing control and treatment groups, HyDEN demonstrated more pronounced disruption and greater mycelial growth inhibition than Globus 5.5. HyDEN also effectively inhibited spore germination compared to Globus 5.5. Tests on intracellular ion leakage showed that HyDEN caused higher conductivity, indicating significant membrane disruption. Additionally, HyDEN led to a greater release of soluble sugars due to membrane damage compared to Globus 5.5. These findings suggest that HyDEN is a promising antifungal strategy, effectively disrupting cell wall and membrane functionality, and inhibiting fungal growth.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.