黎曼曲面上自旋束的伪拉普拉齐和 $$\zeta ^{(\textrm{reg})}(1)$$ 的决定因素

Alexey Kokotov, Dmitrii Korikov
{"title":"黎曼曲面上自旋束的伪拉普拉齐和 $$\\zeta ^{(\\textrm{reg})}(1)$$ 的决定因素","authors":"Alexey Kokotov, Dmitrii Korikov","doi":"10.1007/s12220-024-01782-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>P</i> be a point of a compact Riemann surface <i>X</i>. We study self-adjoint extensions of the Dolbeault Laplacians in hermitian line bundles <i>L</i> over <i>X</i> initially defined on sections with compact supports in <span>\\(X\\backslash \\{P\\}\\)</span>. We define the <span>\\(\\zeta \\)</span>-regularized determinants for these operators and derive comparison formulas for them. We introduce the notion of the Robin mass of <i>L</i>. This quantity enters the comparison formulas for determinants and is related to the regularized <span>\\(\\zeta (1)\\)</span> for the Dolbeault Laplacian. For spinor bundles of even characteristic, we find an explicit expression for the Robin mass. In addition, we propose an explicit formula for the Robin mass in the scalar case. Using this formula, we describe the evolution of the regularized <span>\\(\\zeta (1)\\)</span> for scalar Laplacian under the Ricci flow. As a byproduct, we find an alternative proof for the Morpurgo result that the round metric minimizes the regularized <span>\\(\\zeta (1)\\)</span> for surfaces of genus zero.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinants of Pseudo-laplacians and $$\\\\zeta ^{(\\\\textrm{reg})}(1)$$ for Spinor Bundles Over Riemann Surfaces\",\"authors\":\"Alexey Kokotov, Dmitrii Korikov\",\"doi\":\"10.1007/s12220-024-01782-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>P</i> be a point of a compact Riemann surface <i>X</i>. We study self-adjoint extensions of the Dolbeault Laplacians in hermitian line bundles <i>L</i> over <i>X</i> initially defined on sections with compact supports in <span>\\\\(X\\\\backslash \\\\{P\\\\}\\\\)</span>. We define the <span>\\\\(\\\\zeta \\\\)</span>-regularized determinants for these operators and derive comparison formulas for them. We introduce the notion of the Robin mass of <i>L</i>. This quantity enters the comparison formulas for determinants and is related to the regularized <span>\\\\(\\\\zeta (1)\\\\)</span> for the Dolbeault Laplacian. For spinor bundles of even characteristic, we find an explicit expression for the Robin mass. In addition, we propose an explicit formula for the Robin mass in the scalar case. Using this formula, we describe the evolution of the regularized <span>\\\\(\\\\zeta (1)\\\\)</span> for scalar Laplacian under the Ricci flow. As a byproduct, we find an alternative proof for the Morpurgo result that the round metric minimizes the regularized <span>\\\\(\\\\zeta (1)\\\\)</span> for surfaces of genus zero.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01782-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01782-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让P是紧凑黎曼曲面X上的一个点。我们研究X上ermitian线束L中的多尔贝拉普拉契(Dolbeault Laplacians)的自相交扩展,它们最初定义在具有紧凑支撑的\(X\backslash \{P\}\)截面上。我们定义了这些算子的(\zeta \)规则化行列式,并推导出它们的比较公式。我们引入了L的罗宾质量(Robin mass)的概念。这个量进入了行列式的比较公式,并与多尔贝拉aplacian的正则化\(\zeta (1)\) 相关。对于偶数特征的旋光束,我们找到了罗宾质量的明确表达式。此外,我们还提出了标量情况下罗宾质量的明确公式。利用这个公式,我们描述了在利玛窦流作用下标量拉普拉斯正则化(\zeta (1)\)的演化。作为副产品,我们找到了莫泊桑(Morpurgo)结果的另一个证明,即对于零属的曲面,圆形度量最小化了正则化的\(\zeta (1)\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determinants of Pseudo-laplacians and $$\zeta ^{(\textrm{reg})}(1)$$ for Spinor Bundles Over Riemann Surfaces

Let P be a point of a compact Riemann surface X. We study self-adjoint extensions of the Dolbeault Laplacians in hermitian line bundles L over X initially defined on sections with compact supports in \(X\backslash \{P\}\). We define the \(\zeta \)-regularized determinants for these operators and derive comparison formulas for them. We introduce the notion of the Robin mass of L. This quantity enters the comparison formulas for determinants and is related to the regularized \(\zeta (1)\) for the Dolbeault Laplacian. For spinor bundles of even characteristic, we find an explicit expression for the Robin mass. In addition, we propose an explicit formula for the Robin mass in the scalar case. Using this formula, we describe the evolution of the regularized \(\zeta (1)\) for scalar Laplacian under the Ricci flow. As a byproduct, we find an alternative proof for the Morpurgo result that the round metric minimizes the regularized \(\zeta (1)\) for surfaces of genus zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信