具有混合曲率条件的紧凑凯勒流形的投影性

Litao Han, Chang Li, Yangxiang Lu
{"title":"具有混合曲率条件的紧凑凯勒流形的投影性","authors":"Litao Han, Chang Li, Yangxiang Lu","doi":"10.1007/s12220-024-01789-1","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, Li–Ni–Zhu study the nefness and ampleness of the canonical line bundle of a compact Kähler manifold with <span>\\(\\textrm{Ric}_k\\leqslant 0\\)</span> and provide a direct alternate proof to a recent result of Chu–Lee–Tam. In this paper, we generalize the method of Li–Ni–Zhu to a more general setting which concerning the connection between the mixed curvature condition and the positivity of the canonical bundle. The key point is to do some a priori estimates to the solution of a Mong-Ampère type equation.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Projectivity of Compact Kähler Manifolds with Mixed Curvature Condition\",\"authors\":\"Litao Han, Chang Li, Yangxiang Lu\",\"doi\":\"10.1007/s12220-024-01789-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent paper, Li–Ni–Zhu study the nefness and ampleness of the canonical line bundle of a compact Kähler manifold with <span>\\\\(\\\\textrm{Ric}_k\\\\leqslant 0\\\\)</span> and provide a direct alternate proof to a recent result of Chu–Lee–Tam. In this paper, we generalize the method of Li–Ni–Zhu to a more general setting which concerning the connection between the mixed curvature condition and the positivity of the canonical bundle. The key point is to do some a priori estimates to the solution of a Mong-Ampère type equation.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01789-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01789-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,李-尼-朱研究了具有\(\textrm{Ric}_k\leqslant 0\) 的紧凑凯勒流形的典型线束的无穷性和振幅性,并对朱-李-谭(Chu-Lee-Tam)最近的一个结果提供了直接的替代证明。在本文中,我们将李-尼-朱的方法推广到一个更一般的环境中,其中涉及混合曲率条件与正典束的正向性之间的联系。关键是对蒙-安培方程的解进行一些先验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Projectivity of Compact Kähler Manifolds with Mixed Curvature Condition

The Projectivity of Compact Kähler Manifolds with Mixed Curvature Condition

In a recent paper, Li–Ni–Zhu study the nefness and ampleness of the canonical line bundle of a compact Kähler manifold with \(\textrm{Ric}_k\leqslant 0\) and provide a direct alternate proof to a recent result of Chu–Lee–Tam. In this paper, we generalize the method of Li–Ni–Zhu to a more general setting which concerning the connection between the mixed curvature condition and the positivity of the canonical bundle. The key point is to do some a priori estimates to the solution of a Mong-Ampère type equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信