{"title":"利用声像图融合注意和选择性变换建立化脓性关节炎模型:初步研究","authors":"Chung-Ming Lo, Kuo-Lung Lai","doi":"10.1007/s10278-024-01259-8","DOIUrl":null,"url":null,"abstract":"<p>Conventionally diagnosing septic arthritis relies on detecting the causal pathogens in samples of synovial fluid, synovium, or blood. However, isolating these pathogens through cultures takes several days, thus delaying both diagnosis and treatment. Establishing a quantitative classification model from ultrasound images for rapid septic arthritis diagnosis is mandatory. For the study, a database composed of 342 images of non-septic arthritis and 168 images of septic arthritis produced by grayscale (GS) and power Doppler (PD) ultrasound was constructed. In the proposed architecture of fusion with attention and selective transformation (FAST), both groups of images were combined in a vision transformer (ViT) with the convolutional block attention module, which incorporates spatial, modality, and channel features. Fivefold cross-validation was applied to evaluate the generalized ability. The FAST architecture achieved the accuracy, sensitivity, specificity, and area under the curve (AUC) of 86.33%, 80.66%, 90.25%, and 0.92, respectively. These performances were higher than using conventional ViT (82.14%) and significantly better than using one modality alone (GS 73.88%, PD 72.02%), with the <i>p</i>-value being less than 0.01. Through the integration of multi-modality and the extraction of multiple channel features, the established model provided promising accuracy and AUC in septic arthritis classification. The end-to-end learning of ultrasound features can provide both rapid and objective assessment suggestions for future clinic use.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study\",\"authors\":\"Chung-Ming Lo, Kuo-Lung Lai\",\"doi\":\"10.1007/s10278-024-01259-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventionally diagnosing septic arthritis relies on detecting the causal pathogens in samples of synovial fluid, synovium, or blood. However, isolating these pathogens through cultures takes several days, thus delaying both diagnosis and treatment. Establishing a quantitative classification model from ultrasound images for rapid septic arthritis diagnosis is mandatory. For the study, a database composed of 342 images of non-septic arthritis and 168 images of septic arthritis produced by grayscale (GS) and power Doppler (PD) ultrasound was constructed. In the proposed architecture of fusion with attention and selective transformation (FAST), both groups of images were combined in a vision transformer (ViT) with the convolutional block attention module, which incorporates spatial, modality, and channel features. Fivefold cross-validation was applied to evaluate the generalized ability. The FAST architecture achieved the accuracy, sensitivity, specificity, and area under the curve (AUC) of 86.33%, 80.66%, 90.25%, and 0.92, respectively. These performances were higher than using conventional ViT (82.14%) and significantly better than using one modality alone (GS 73.88%, PD 72.02%), with the <i>p</i>-value being less than 0.01. Through the integration of multi-modality and the extraction of multiple channel features, the established model provided promising accuracy and AUC in septic arthritis classification. The end-to-end learning of ultrasound features can provide both rapid and objective assessment suggestions for future clinic use.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01259-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01259-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study
Conventionally diagnosing septic arthritis relies on detecting the causal pathogens in samples of synovial fluid, synovium, or blood. However, isolating these pathogens through cultures takes several days, thus delaying both diagnosis and treatment. Establishing a quantitative classification model from ultrasound images for rapid septic arthritis diagnosis is mandatory. For the study, a database composed of 342 images of non-septic arthritis and 168 images of septic arthritis produced by grayscale (GS) and power Doppler (PD) ultrasound was constructed. In the proposed architecture of fusion with attention and selective transformation (FAST), both groups of images were combined in a vision transformer (ViT) with the convolutional block attention module, which incorporates spatial, modality, and channel features. Fivefold cross-validation was applied to evaluate the generalized ability. The FAST architecture achieved the accuracy, sensitivity, specificity, and area under the curve (AUC) of 86.33%, 80.66%, 90.25%, and 0.92, respectively. These performances were higher than using conventional ViT (82.14%) and significantly better than using one modality alone (GS 73.88%, PD 72.02%), with the p-value being less than 0.01. Through the integration of multi-modality and the extraction of multiple channel features, the established model provided promising accuracy and AUC in septic arthritis classification. The end-to-end learning of ultrasound features can provide both rapid and objective assessment suggestions for future clinic use.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.