{"title":"T0 空间和下拓扑","authors":"Jimmie Lawson, Xiaoquan Xu","doi":"10.1017/s0960129524000240","DOIUrl":null,"url":null,"abstract":"The authors’ primary goal in this paper is to enhance the study of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline1.png\"/> <jats:tex-math> $T_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> topological spaces by using the order of specialization of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline2.png\"/> <jats:tex-math> $T_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-space to introduce the lower topology (with a subbasis of closed sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline3.png\"/> <jats:tex-math> $\\mathord{\\uparrow } x$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) and studying the interaction of the original topology and the lower topology. Using the lower topology, one can define and study new properties of the original space that provide deeper insight into its structure. One focus of study is the property R, which asserts that if the intersection of a family of finitely generated sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline4.png\"/> <jats:tex-math> $\\mathord{\\uparrow } F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline5.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> finite, is contained in an open set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline6.png\"/> <jats:tex-math> $U$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the same is true for finitely many of the family. We first show that property R is equivalent to several other interesting properties, for example, the property that all closed subsets of the original space are compact in the lower topology. We then find conditions under which these spaces are compact, well-filtered, and coherent, a weaker variant of stably compact spaces. We also investigate what have been called strong <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline7.png\"/> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-spaces, develop some of their basic properties, and make connections with the earlier considerations involving spaces satisfying property R. Two key results we obtain are that if a dcpo <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline8.png\"/> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with the Scott topology is a strong <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline9.png\"/> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-space, then it is well-filtered, and if additionally the Scott topology of the product <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline10.png\"/> <jats:tex-math> $P\\times P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the product of the Scott topologies of the factors, then the Scott space of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0960129524000240_inline11.png\"/> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is sober. We also exhibit connections of this work with de Groot duality.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T0-spaces and the lower topology\",\"authors\":\"Jimmie Lawson, Xiaoquan Xu\",\"doi\":\"10.1017/s0960129524000240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors’ primary goal in this paper is to enhance the study of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline1.png\\\"/> <jats:tex-math> $T_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> topological spaces by using the order of specialization of a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline2.png\\\"/> <jats:tex-math> $T_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-space to introduce the lower topology (with a subbasis of closed sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline3.png\\\"/> <jats:tex-math> $\\\\mathord{\\\\uparrow } x$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>) and studying the interaction of the original topology and the lower topology. Using the lower topology, one can define and study new properties of the original space that provide deeper insight into its structure. One focus of study is the property R, which asserts that if the intersection of a family of finitely generated sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline4.png\\\"/> <jats:tex-math> $\\\\mathord{\\\\uparrow } F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline5.png\\\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> finite, is contained in an open set <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline6.png\\\"/> <jats:tex-math> $U$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the same is true for finitely many of the family. We first show that property R is equivalent to several other interesting properties, for example, the property that all closed subsets of the original space are compact in the lower topology. We then find conditions under which these spaces are compact, well-filtered, and coherent, a weaker variant of stably compact spaces. We also investigate what have been called strong <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline7.png\\\"/> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-spaces, develop some of their basic properties, and make connections with the earlier considerations involving spaces satisfying property R. Two key results we obtain are that if a dcpo <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline8.png\\\"/> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with the Scott topology is a strong <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline9.png\\\"/> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-space, then it is well-filtered, and if additionally the Scott topology of the product <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline10.png\\\"/> <jats:tex-math> $P\\\\times P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the product of the Scott topologies of the factors, then the Scott space of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0960129524000240_inline11.png\\\"/> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is sober. We also exhibit connections of this work with de Groot duality.\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000240\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000240","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The authors’ primary goal in this paper is to enhance the study of $T_0$ topological spaces by using the order of specialization of a $T_0$ -space to introduce the lower topology (with a subbasis of closed sets $\mathord{\uparrow } x$ ) and studying the interaction of the original topology and the lower topology. Using the lower topology, one can define and study new properties of the original space that provide deeper insight into its structure. One focus of study is the property R, which asserts that if the intersection of a family of finitely generated sets $\mathord{\uparrow } F$ , $F$ finite, is contained in an open set $U$ , then the same is true for finitely many of the family. We first show that property R is equivalent to several other interesting properties, for example, the property that all closed subsets of the original space are compact in the lower topology. We then find conditions under which these spaces are compact, well-filtered, and coherent, a weaker variant of stably compact spaces. We also investigate what have been called strong $d$ -spaces, develop some of their basic properties, and make connections with the earlier considerations involving spaces satisfying property R. Two key results we obtain are that if a dcpo $P$ with the Scott topology is a strong $d$ -space, then it is well-filtered, and if additionally the Scott topology of the product $P\times P$ is the product of the Scott topologies of the factors, then the Scott space of $P$ is sober. We also exhibit connections of this work with de Groot duality.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.