{"title":"克劳斯为王:林德布拉德主方程的高阶完全正向和轨迹保留 (CPTP) 低阶方法","authors":"Daniel Appelo, Yingda Cheng","doi":"arxiv-2409.08898","DOIUrl":null,"url":null,"abstract":"We design high order accurate methods that exploit low rank structure in the\ndensity matrix while respecting the essential structure of the Lindblad\nequation. Our methods preserves complete positivity and are trace preserving.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kraus is King: High-order Completely Positive and Trace Preserving (CPTP) Low Rank Method for the Lindblad Master Equation\",\"authors\":\"Daniel Appelo, Yingda Cheng\",\"doi\":\"arxiv-2409.08898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design high order accurate methods that exploit low rank structure in the\\ndensity matrix while respecting the essential structure of the Lindblad\\nequation. Our methods preserves complete positivity and are trace preserving.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kraus is King: High-order Completely Positive and Trace Preserving (CPTP) Low Rank Method for the Lindblad Master Equation
We design high order accurate methods that exploit low rank structure in the
density matrix while respecting the essential structure of the Lindblad
equation. Our methods preserves complete positivity and are trace preserving.