可估算变异神经网络及其在 ODE 和标量双曲守恒定律中的应用

Mária Lukáčová-Medviďová, Simon Schneider
{"title":"可估算变异神经网络及其在 ODE 和标量双曲守恒定律中的应用","authors":"Mária Lukáčová-Medviďová, Simon Schneider","doi":"arxiv-2409.08909","DOIUrl":null,"url":null,"abstract":"We introduce estimatable variation neural networks (EVNNs), a class of neural\nnetworks that allow a computationally cheap estimate on the $BV$ norm motivated\nby the space $BMV$ of functions with bounded M-variation. We prove a universal\napproximation theorem for EVNNs and discuss possible implementations. We\nconstruct sequences of loss functionals for ODEs and scalar hyperbolic\nconservation laws for which a vanishing loss leads to convergence. Moreover, we\nshow the existence of sequences of loss minimizing neural networks if the\nsolution is an element of $BMV$. Several numerical test cases illustrate that\nit is possible to use standard techniques to minimize these loss functionals\nfor EVNNs.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimatable variation neural networks and their application to ODEs and scalar hyperbolic conservation laws\",\"authors\":\"Mária Lukáčová-Medviďová, Simon Schneider\",\"doi\":\"arxiv-2409.08909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce estimatable variation neural networks (EVNNs), a class of neural\\nnetworks that allow a computationally cheap estimate on the $BV$ norm motivated\\nby the space $BMV$ of functions with bounded M-variation. We prove a universal\\napproximation theorem for EVNNs and discuss possible implementations. We\\nconstruct sequences of loss functionals for ODEs and scalar hyperbolic\\nconservation laws for which a vanishing loss leads to convergence. Moreover, we\\nshow the existence of sequences of loss minimizing neural networks if the\\nsolution is an element of $BMV$. Several numerical test cases illustrate that\\nit is possible to use standard techniques to minimize these loss functionals\\nfor EVNNs.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了可估算变异神经网络(EVNNs),这是一类允许对具有有界 M 变异的函数空间 $BMV$ 的 $BV$ 准则进行计算廉价估算的神经网络。我们证明了 EVNN 的通用近似定理,并讨论了可能的实现方法。我们为 ODE 和标量双曲守恒律构建了损失函数序列,对于这些函数,损失消失会导致收敛。此外,我们还展示了如果解是$BMV$的一个元素,损失最小化神经网络序列的存在性。几个数值测试案例说明,可以使用标准技术最小化 EVNN 的这些损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimatable variation neural networks and their application to ODEs and scalar hyperbolic conservation laws
We introduce estimatable variation neural networks (EVNNs), a class of neural networks that allow a computationally cheap estimate on the $BV$ norm motivated by the space $BMV$ of functions with bounded M-variation. We prove a universal approximation theorem for EVNNs and discuss possible implementations. We construct sequences of loss functionals for ODEs and scalar hyperbolic conservation laws for which a vanishing loss leads to convergence. Moreover, we show the existence of sequences of loss minimizing neural networks if the solution is an element of $BMV$. Several numerical test cases illustrate that it is possible to use standard techniques to minimize these loss functionals for EVNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信