基于张量的同步和块状三焦张量的低空白度

Daniel Miao, Gilad Lerman, Joe Kileel
{"title":"基于张量的同步和块状三焦张量的低空白度","authors":"Daniel Miao, Gilad Lerman, Joe Kileel","doi":"arxiv-2409.09313","DOIUrl":null,"url":null,"abstract":"The block tensor of trifocal tensors provides crucial geometric information\non the three-view geometry of a scene. The underlying synchronization problem\nseeks to recover camera poses (locations and orientations up to a global\ntransformation) from the block trifocal tensor. We establish an explicit Tucker\nfactorization of this tensor, revealing a low multilinear rank of $(6,4,4)$\nindependent of the number of cameras under appropriate scaling conditions. We\nprove that this rank constraint provides sufficient information for camera\nrecovery in the noiseless case. The constraint motivates a synchronization\nalgorithm based on the higher-order singular value decomposition of the block\ntrifocal tensor. Experimental comparisons with state-of-the-art global\nsynchronization methods on real datasets demonstrate the potential of this\nalgorithm for significantly improving location estimation accuracy. Overall\nthis work suggests that higher-order interactions in synchronization problems\ncan be exploited to improve performance, beyond the usual pairwise-based\napproaches.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor-Based Synchronization and the Low-Rankness of the Block Trifocal Tensor\",\"authors\":\"Daniel Miao, Gilad Lerman, Joe Kileel\",\"doi\":\"arxiv-2409.09313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The block tensor of trifocal tensors provides crucial geometric information\\non the three-view geometry of a scene. The underlying synchronization problem\\nseeks to recover camera poses (locations and orientations up to a global\\ntransformation) from the block trifocal tensor. We establish an explicit Tucker\\nfactorization of this tensor, revealing a low multilinear rank of $(6,4,4)$\\nindependent of the number of cameras under appropriate scaling conditions. We\\nprove that this rank constraint provides sufficient information for camera\\nrecovery in the noiseless case. The constraint motivates a synchronization\\nalgorithm based on the higher-order singular value decomposition of the block\\ntrifocal tensor. Experimental comparisons with state-of-the-art global\\nsynchronization methods on real datasets demonstrate the potential of this\\nalgorithm for significantly improving location estimation accuracy. Overall\\nthis work suggests that higher-order interactions in synchronization problems\\ncan be exploited to improve performance, beyond the usual pairwise-based\\napproaches.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三焦点张量的块张量提供了场景三视几何的关键几何信息。基本同步问题旨在从块三焦点张量中恢复摄像机姿态(全局变换前的位置和方向)。我们建立了该张量的显式塔克因子化,揭示了在适当的缩放条件下与摄像机数量无关的$(6,4,4)$低多线性秩。我们证明,在无噪声的情况下,这个秩约束为摄像机识别提供了足够的信息。该约束激发了一种基于块焦点张量的高阶奇异值分解的同步算法。在真实数据集上与最先进的全局同步方法进行的实验比较表明,这种算法具有显著提高位置估计精度的潜力。总之,这项工作表明,同步问题中的高阶交互作用可以被利用来提高性能,而不是通常的基于配对的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor-Based Synchronization and the Low-Rankness of the Block Trifocal Tensor
The block tensor of trifocal tensors provides crucial geometric information on the three-view geometry of a scene. The underlying synchronization problem seeks to recover camera poses (locations and orientations up to a global transformation) from the block trifocal tensor. We establish an explicit Tucker factorization of this tensor, revealing a low multilinear rank of $(6,4,4)$ independent of the number of cameras under appropriate scaling conditions. We prove that this rank constraint provides sufficient information for camera recovery in the noiseless case. The constraint motivates a synchronization algorithm based on the higher-order singular value decomposition of the block trifocal tensor. Experimental comparisons with state-of-the-art global synchronization methods on real datasets demonstrate the potential of this algorithm for significantly improving location estimation accuracy. Overall this work suggests that higher-order interactions in synchronization problems can be exploited to improve performance, beyond the usual pairwise-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信