PROSE-FD:用于学习流体力学预测多算子的多模态 PDE 基础模型

Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, Hayden Schaeffer
{"title":"PROSE-FD:用于学习流体力学预测多算子的多模态 PDE 基础模型","authors":"Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, Hayden Schaeffer","doi":"arxiv-2409.09811","DOIUrl":null,"url":null,"abstract":"We propose PROSE-FD, a zero-shot multimodal PDE foundational model for\nsimultaneous prediction of heterogeneous two-dimensional physical systems\nrelated to distinct fluid dynamics settings. These systems include shallow\nwater equations and the Navier-Stokes equations with incompressible and\ncompressible flow, regular and complex geometries, and different buoyancy\nsettings. This work presents a new transformer-based multi-operator learning\napproach that fuses symbolic information to perform operator-based data\nprediction, i.e. non-autoregressive. By incorporating multiple modalities in\nthe inputs, the PDE foundation model builds in a pathway for including\nmathematical descriptions of the physical behavior. We pre-train our foundation\nmodel on 6 parametric families of equations collected from 13 datasets,\nincluding over 60K trajectories. Our model outperforms popular operator\nlearning, computer vision, and multi-physics models, in benchmark forward\nprediction tasks. We test our architecture choices with ablation studies.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics\",\"authors\":\"Yuxuan Liu, Jingmin Sun, Xinjie He, Griffin Pinney, Zecheng Zhang, Hayden Schaeffer\",\"doi\":\"arxiv-2409.09811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose PROSE-FD, a zero-shot multimodal PDE foundational model for\\nsimultaneous prediction of heterogeneous two-dimensional physical systems\\nrelated to distinct fluid dynamics settings. These systems include shallow\\nwater equations and the Navier-Stokes equations with incompressible and\\ncompressible flow, regular and complex geometries, and different buoyancy\\nsettings. This work presents a new transformer-based multi-operator learning\\napproach that fuses symbolic information to perform operator-based data\\nprediction, i.e. non-autoregressive. By incorporating multiple modalities in\\nthe inputs, the PDE foundation model builds in a pathway for including\\nmathematical descriptions of the physical behavior. We pre-train our foundation\\nmodel on 6 parametric families of equations collected from 13 datasets,\\nincluding over 60K trajectories. Our model outperforms popular operator\\nlearning, computer vision, and multi-physics models, in benchmark forward\\nprediction tasks. We test our architecture choices with ablation studies.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的 PROSE-FD 是一个零射多模态 PDE 基础模型,用于同时预测与不同流体动力学环境相关的异质二维物理系统。这些系统包括具有不可压缩和可压缩流动、规则和复杂几何形状以及不同浮力设置的浅水方程和纳维-斯托克斯方程。本研究提出了一种新的基于变换器的多运算器学习方法,它融合了符号信息来执行基于运算器的数据预测,即非自回归预测。通过在输入中加入多种模式,PDE 基础模型建立了一条包含物理行为数学描述的途径。我们在 13 个数据集(包括 60K 多条轨迹)中收集的 6 个参数方程组上对基础模型进行了预训练。在基准前向预测任务中,我们的模型优于流行的算子学习、计算机视觉和多物理场模型。我们通过消融研究测试了我们的架构选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROSE-FD: A Multimodal PDE Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics
We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信