大规模贝叶斯非线性逆问题的稳健优化设计

Abhijit Chowdhary, Ahmed Attia, Alen Alexanderian
{"title":"大规模贝叶斯非线性逆问题的稳健优化设计","authors":"Abhijit Chowdhary, Ahmed Attia, Alen Alexanderian","doi":"arxiv-2409.09137","DOIUrl":null,"url":null,"abstract":"We consider robust optimal experimental design (ROED) for nonlinear Bayesian\ninverse problems governed by partial differential equations (PDEs). An optimal\ndesign is one that maximizes some utility quantifying the quality of the\nsolution of an inverse problem. However, the optimal design is dependent on\nelements of the inverse problem such as the simulation model, the prior, or the\nmeasurement error model. ROED aims to produce an optimal design that is aware\nof the additional uncertainties encoded in the inverse problem and remains\noptimal even after variations in them. We follow a worst-case scenario approach\nto develop a new framework for robust optimal design of nonlinear Bayesian\ninverse problems. The proposed framework a) is scalable and designed for\ninfinite-dimensional Bayesian nonlinear inverse problems constrained by PDEs;\nb) develops efficient approximations of the utility, namely, the expected\ninformation gain; c) employs eigenvalue sensitivity techniques to develop\nanalytical forms and efficient evaluation methods of the gradient of the\nutility with respect to the uncertainties we wish to be robust against; and d)\nemploys a probabilistic optimization paradigm that properly defines and\nefficiently solves the resulting combinatorial max-min optimization problem.\nThe effectiveness of the proposed approach is illustrated for optimal sensor\nplacement problem in an inverse problem governed by an elliptic PDE.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust optimal design of large-scale Bayesian nonlinear inverse problems\",\"authors\":\"Abhijit Chowdhary, Ahmed Attia, Alen Alexanderian\",\"doi\":\"arxiv-2409.09137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider robust optimal experimental design (ROED) for nonlinear Bayesian\\ninverse problems governed by partial differential equations (PDEs). An optimal\\ndesign is one that maximizes some utility quantifying the quality of the\\nsolution of an inverse problem. However, the optimal design is dependent on\\nelements of the inverse problem such as the simulation model, the prior, or the\\nmeasurement error model. ROED aims to produce an optimal design that is aware\\nof the additional uncertainties encoded in the inverse problem and remains\\noptimal even after variations in them. We follow a worst-case scenario approach\\nto develop a new framework for robust optimal design of nonlinear Bayesian\\ninverse problems. The proposed framework a) is scalable and designed for\\ninfinite-dimensional Bayesian nonlinear inverse problems constrained by PDEs;\\nb) develops efficient approximations of the utility, namely, the expected\\ninformation gain; c) employs eigenvalue sensitivity techniques to develop\\nanalytical forms and efficient evaluation methods of the gradient of the\\nutility with respect to the uncertainties we wish to be robust against; and d)\\nemploys a probabilistic optimization paradigm that properly defines and\\nefficiently solves the resulting combinatorial max-min optimization problem.\\nThe effectiveness of the proposed approach is illustrated for optimal sensor\\nplacement problem in an inverse problem governed by an elliptic PDE.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是由偏微分方程(PDE)控制的非线性贝叶斯逆问题的稳健优化实验设计(ROED)。最优设计是一种能最大化量化逆问题求解质量的效用的设计。然而,最优设计取决于逆问题的一个要素,如模拟模型、先验或主题测量误差模型。ROED 的目标是产生一种最佳设计,这种设计能够意识到逆问题中编码的额外不确定性,并且在这些不确定性发生变化后仍能保持最佳状态。我们采用最坏情况假设方法,为非线性贝叶斯逆问题的鲁棒优化设计开发了一个新框架。所提出的框架 a) 具有可扩展性,专为受 PDE 约束的无限维贝叶斯非线性逆问题而设计;b) 开发了效用(即预期信息增益)的高效近似值;c) 采用特征值敏感性技术,开发了效用梯度的分析形式和高效评估方法,这些梯度与我们希望稳健应对的不确定性有关;d) 采用概率优化范式,正确定义并高效求解由此产生的组合最大最小优化问题。在一个由椭圆 PDE 控制的逆问题中,对传感器的最佳安置问题进行了说明,从而展示了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust optimal design of large-scale Bayesian nonlinear inverse problems
We consider robust optimal experimental design (ROED) for nonlinear Bayesian inverse problems governed by partial differential equations (PDEs). An optimal design is one that maximizes some utility quantifying the quality of the solution of an inverse problem. However, the optimal design is dependent on elements of the inverse problem such as the simulation model, the prior, or the measurement error model. ROED aims to produce an optimal design that is aware of the additional uncertainties encoded in the inverse problem and remains optimal even after variations in them. We follow a worst-case scenario approach to develop a new framework for robust optimal design of nonlinear Bayesian inverse problems. The proposed framework a) is scalable and designed for infinite-dimensional Bayesian nonlinear inverse problems constrained by PDEs; b) develops efficient approximations of the utility, namely, the expected information gain; c) employs eigenvalue sensitivity techniques to develop analytical forms and efficient evaluation methods of the gradient of the utility with respect to the uncertainties we wish to be robust against; and d) employs a probabilistic optimization paradigm that properly defines and efficiently solves the resulting combinatorial max-min optimization problem. The effectiveness of the proposed approach is illustrated for optimal sensor placement problem in an inverse problem governed by an elliptic PDE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信