四元张量低阶近似值

Alaeddine Zahir, Ahmed Ratnani, Khalide Jbilou
{"title":"四元张量低阶近似值","authors":"Alaeddine Zahir, Ahmed Ratnani, Khalide Jbilou","doi":"arxiv-2409.10724","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approaches for low rank approximation of\nquaternion tensors\n\\cite{chen2019low,zhang1997quaternions,hamilton1866elements}. The first method\nuses quasi-norms to approximate the tensor by a low-rank tensor using the\nQT-product \\cite{miao2023quaternion}, which generalizes the known L-product to\nN-mode quaternions. The second method involves Non-Convex norms to approximate\nthe Tucker and TT-rank for the completion problem. We demonstrate that the\nproposed methods can effectively approximate the tensor compared to the\nconvexifying of the rank, such as the nuclear norm. We provide theoretical\nresults and numerical experiments to show the efficiency of the proposed\nmethods in the Inpainting and Denoising applications.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quaternion tensor low rank approximation\",\"authors\":\"Alaeddine Zahir, Ahmed Ratnani, Khalide Jbilou\",\"doi\":\"arxiv-2409.10724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new approaches for low rank approximation of\\nquaternion tensors\\n\\\\cite{chen2019low,zhang1997quaternions,hamilton1866elements}. The first method\\nuses quasi-norms to approximate the tensor by a low-rank tensor using the\\nQT-product \\\\cite{miao2023quaternion}, which generalizes the known L-product to\\nN-mode quaternions. The second method involves Non-Convex norms to approximate\\nthe Tucker and TT-rank for the completion problem. We demonstrate that the\\nproposed methods can effectively approximate the tensor compared to the\\nconvexifying of the rank, such as the nuclear norm. We provide theoretical\\nresults and numerical experiments to show the efficiency of the proposed\\nmethods in the Inpainting and Denoising applications.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了四元张量低阶近似的新方法(cite{chen2019low,zhang1997quaternions,hamilton1866elements})。第一种方法利用准矩阵通过低秩张量逼近四元张量,使用的是(QT-product)QT-product,它将已知的 L-product 推广到了 N 模四元数。第二种方法使用非凸规范来逼近补全问题的塔克秩和 TT 秩。我们证明,与秩的凸化(如核规范)相比,所提出的方法能有效地近似张量。我们提供了理论结果和数值实验,以显示所提方法在 Inpainting 和 Denoising 应用中的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternion tensor low rank approximation
In this paper, we propose a new approaches for low rank approximation of quaternion tensors \cite{chen2019low,zhang1997quaternions,hamilton1866elements}. The first method uses quasi-norms to approximate the tensor by a low-rank tensor using the QT-product \cite{miao2023quaternion}, which generalizes the known L-product to N-mode quaternions. The second method involves Non-Convex norms to approximate the Tucker and TT-rank for the completion problem. We demonstrate that the proposed methods can effectively approximate the tensor compared to the convexifying of the rank, such as the nuclear norm. We provide theoretical results and numerical experiments to show the efficiency of the proposed methods in the Inpainting and Denoising applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信