频域毕奥孔弹性方程的稳定总压公式:数值分析与应用

Cristian Cárcamo, Alfonso Caiazzo, Felipe Galarce, Joaquín Mura
{"title":"频域毕奥孔弹性方程的稳定总压公式:数值分析与应用","authors":"Cristian Cárcamo, Alfonso Caiazzo, Felipe Galarce, Joaquín Mura","doi":"arxiv-2409.10465","DOIUrl":null,"url":null,"abstract":"This work focuses on the numerical solution of the dynamics of a poroelastic\nmaterial in the frequency domain. We provide a detailed stability analysis\nbased on the application of the Fredholm alternative in the continuous case,\nconsidering a total pressure formulation of the Biot's equations. In the\ndiscrete setting, we propose a stabilized equal order finite element method\ncomplemented by an additional pressure stabilization to enhance the robustness\nof the numerical scheme with respect to the fluid permeability. Utilizing the\nFredholm alternative, we extend the well-posedness results to the discrete\nsetting, obtaining theoretical optimal convergence for the case of linear\nfinite elements. We present different numerical experiments to validate the\nproposed method. First, we consider model problems with known analytic\nsolutions in two and three dimensions. As next, we show that the method is\nrobust for a wide range of permeabilities, including the case of discontinuous\ncoefficients. Lastly, we show the application for the simulation of brain\nelastography on a realistic brain geometry obtained from medical imaging.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"204 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stabilized total pressure-formulation of the Biot's poroelasticity equations in frequency domain: numerical analysis and applications\",\"authors\":\"Cristian Cárcamo, Alfonso Caiazzo, Felipe Galarce, Joaquín Mura\",\"doi\":\"arxiv-2409.10465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the numerical solution of the dynamics of a poroelastic\\nmaterial in the frequency domain. We provide a detailed stability analysis\\nbased on the application of the Fredholm alternative in the continuous case,\\nconsidering a total pressure formulation of the Biot's equations. In the\\ndiscrete setting, we propose a stabilized equal order finite element method\\ncomplemented by an additional pressure stabilization to enhance the robustness\\nof the numerical scheme with respect to the fluid permeability. Utilizing the\\nFredholm alternative, we extend the well-posedness results to the discrete\\nsetting, obtaining theoretical optimal convergence for the case of linear\\nfinite elements. We present different numerical experiments to validate the\\nproposed method. First, we consider model problems with known analytic\\nsolutions in two and three dimensions. As next, we show that the method is\\nrobust for a wide range of permeabilities, including the case of discontinuous\\ncoefficients. Lastly, we show the application for the simulation of brain\\nelastography on a realistic brain geometry obtained from medical imaging.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是在频域内对孔弹性材料的动力学进行数值求解。考虑到 Biot 方程的总压力公式,我们提供了基于连续情况下 Fredholm 替代应用的详细稳定性分析。在离散情况下,我们提出了一种稳定的等阶有限元方法,并辅以额外的压力稳定,以增强数值方案对流体渗透性的稳健性。利用弗雷德霍姆替代方法,我们将问题解决的结果扩展到离散化,获得了线性有限元情况下的理论最佳收敛性。我们通过不同的数值实验来验证所提出的方法。首先,我们考虑了二维和三维中已知分析溶解度的模型问题。接下来,我们展示了该方法对各种渗透率都是可靠的,包括不连续系数的情况。最后,我们展示了在医学成像获得的现实大脑几何图形上模拟脑弹性成像的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stabilized total pressure-formulation of the Biot's poroelasticity equations in frequency domain: numerical analysis and applications
This work focuses on the numerical solution of the dynamics of a poroelastic material in the frequency domain. We provide a detailed stability analysis based on the application of the Fredholm alternative in the continuous case, considering a total pressure formulation of the Biot's equations. In the discrete setting, we propose a stabilized equal order finite element method complemented by an additional pressure stabilization to enhance the robustness of the numerical scheme with respect to the fluid permeability. Utilizing the Fredholm alternative, we extend the well-posedness results to the discrete setting, obtaining theoretical optimal convergence for the case of linear finite elements. We present different numerical experiments to validate the proposed method. First, we consider model problems with known analytic solutions in two and three dimensions. As next, we show that the method is robust for a wide range of permeabilities, including the case of discontinuous coefficients. Lastly, we show the application for the simulation of brain elastography on a realistic brain geometry obtained from medical imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信