采用深度后向动态程序设计时间行进的 Neumann 边界条件非线性 BSPDE 的局部非连续 Galerkin 方法

Yixiang Dai, Yunzhang Li, Jing Zhang
{"title":"采用深度后向动态程序设计时间行进的 Neumann 边界条件非线性 BSPDE 的局部非连续 Galerkin 方法","authors":"Yixiang Dai, Yunzhang Li, Jing Zhang","doi":"arxiv-2409.11004","DOIUrl":null,"url":null,"abstract":"This paper aims to present a local discontinuous Galerkin (LDG) method for\nsolving backward stochastic partial differential equations (BSPDEs) with\nNeumann boundary conditions. We establish the $L^2$-stability and optimal error\nestimates of the proposed numerical scheme. Two numerical examples are provided\nto demonstrate the performance of the LDG method, where we incorporate a deep\nlearning algorithm to address the challenge of the curse of dimensionality in\nbackward stochastic differential equations (BSDEs). The results show the\neffectiveness and accuracy of the LDG method in tackling BSPDEs with Neumann\nboundary conditions.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local discontinuous Galerkin method for nonlinear BSPDEs of Neumann boundary conditions with deep backward dynamic programming time-marching\",\"authors\":\"Yixiang Dai, Yunzhang Li, Jing Zhang\",\"doi\":\"arxiv-2409.11004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a local discontinuous Galerkin (LDG) method for\\nsolving backward stochastic partial differential equations (BSPDEs) with\\nNeumann boundary conditions. We establish the $L^2$-stability and optimal error\\nestimates of the proposed numerical scheme. Two numerical examples are provided\\nto demonstrate the performance of the LDG method, where we incorporate a deep\\nlearning algorithm to address the challenge of the curse of dimensionality in\\nbackward stochastic differential equations (BSDEs). The results show the\\neffectiveness and accuracy of the LDG method in tackling BSPDEs with Neumann\\nboundary conditions.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一种局部非连续伽勒金(LDG)方法,用于解决具有纽曼边界条件的后向随机偏微分方程(BSPDEs)。我们建立了所提数值方案的 $L^2$ 稳定性和最优误差估计。我们提供了两个数值示例来证明 LDG 方法的性能,其中我们结合了深度学习算法来解决后向随机微分方程(BSDEs)中的维度诅咒难题。结果表明了 LDG 方法在处理具有 Neumann 边界条件的 BSPDEs 时的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local discontinuous Galerkin method for nonlinear BSPDEs of Neumann boundary conditions with deep backward dynamic programming time-marching
This paper aims to present a local discontinuous Galerkin (LDG) method for solving backward stochastic partial differential equations (BSPDEs) with Neumann boundary conditions. We establish the $L^2$-stability and optimal error estimates of the proposed numerical scheme. Two numerical examples are provided to demonstrate the performance of the LDG method, where we incorporate a deep learning algorithm to address the challenge of the curse of dimensionality in backward stochastic differential equations (BSDEs). The results show the effectiveness and accuracy of the LDG method in tackling BSPDEs with Neumann boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信