用于恢复被表面椒盐噪声破坏的图像的非凸模型

Yuan Liu, Peiqi Yu, Chao Zeng
{"title":"用于恢复被表面椒盐噪声破坏的图像的非凸模型","authors":"Yuan Liu, Peiqi Yu, Chao Zeng","doi":"arxiv-2409.11139","DOIUrl":null,"url":null,"abstract":"Image processing on surfaces has drawn significant interest in recent years,\nparticularly in the context of denoising. Salt-and-pepper noise is a special\ntype of noise which randomly sets a portion of the image pixels to the minimum\nor maximum intensity while keeping the others unaffected. In this paper, We\npropose the L$_p$TV models on triangle meshes to recover images corrupted by\nsalt-and-pepper noise on surfaces. We establish a lower bound for data fitting\nterm of the recovered image. Motivated by the lower bound property, we propose\nthe corresponding algorithm based on the proximal linearization method with the\nsupport shrinking strategy. The global convergence of the proposed algorithm is\ndemonstrated. Numerical examples are given to show good performance of the\nalgorithm.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonconvex models for recovering images corrupted by salt-and-pepper noise on surfaces\",\"authors\":\"Yuan Liu, Peiqi Yu, Chao Zeng\",\"doi\":\"arxiv-2409.11139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing on surfaces has drawn significant interest in recent years,\\nparticularly in the context of denoising. Salt-and-pepper noise is a special\\ntype of noise which randomly sets a portion of the image pixels to the minimum\\nor maximum intensity while keeping the others unaffected. In this paper, We\\npropose the L$_p$TV models on triangle meshes to recover images corrupted by\\nsalt-and-pepper noise on surfaces. We establish a lower bound for data fitting\\nterm of the recovered image. Motivated by the lower bound property, we propose\\nthe corresponding algorithm based on the proximal linearization method with the\\nsupport shrinking strategy. The global convergence of the proposed algorithm is\\ndemonstrated. Numerical examples are given to show good performance of the\\nalgorithm.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,表面图像处理引起了人们的极大兴趣,尤其是在去噪方面。椒盐噪声是一种特殊的噪声,它随机地将图像中的一部分像素设置为最小或最大强度,而其他像素则不受影响。在本文中,我们提出了三角形网格上的 L$_p$TV 模型,用于恢复被表面盐椒噪声破坏的图像。我们建立了恢复图像的数据拟合项下限。受下限特性的启发,我们提出了基于近似线性化方法和支持收缩策略的相应算法。演示了所提算法的全局收敛性。给出的数值示例显示了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconvex models for recovering images corrupted by salt-and-pepper noise on surfaces
Image processing on surfaces has drawn significant interest in recent years, particularly in the context of denoising. Salt-and-pepper noise is a special type of noise which randomly sets a portion of the image pixels to the minimum or maximum intensity while keeping the others unaffected. In this paper, We propose the L$_p$TV models on triangle meshes to recover images corrupted by salt-and-pepper noise on surfaces. We establish a lower bound for data fitting term of the recovered image. Motivated by the lower bound property, we propose the corresponding algorithm based on the proximal linearization method with the support shrinking strategy. The global convergence of the proposed algorithm is demonstrated. Numerical examples are given to show good performance of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信