GePUP-ES:具有无滑动条件的不可压缩纳维-斯托克斯方程的高阶能量稳定投影方法

Yang Li, Xu Wu, Jiatu Yan, Jiang Yang, Qinghai Zhang, Shubo Zhao
{"title":"GePUP-ES:具有无滑动条件的不可压缩纳维-斯托克斯方程的高阶能量稳定投影方法","authors":"Yang Li, Xu Wu, Jiatu Yan, Jiang Yang, Qinghai Zhang, Shubo Zhao","doi":"arxiv-2409.11255","DOIUrl":null,"url":null,"abstract":"Inspired by the unconstrained PPE (UPPE) formulation [Liu, Liu, & Pego 2007\nComm. Pure Appl. Math., 60 pp. 1443], we previously proposed the GePUP\nformulation [Zhang 2016 J. Sci. Comput., 67 pp. 1134] for numerically solving\nthe incompressible Navier-Stokes equations (INSE) on no-slip domains. In this\npaper, we propose GePUP-E and GePUP-ES, variants of GePUP that feature (a)\nelectric boundary conditions with no explicit enforcement of the no-penetration\ncondition, (b) equivalence to the no-slip INSE, (c) exponential decay of the\ndivergence of an initially non-solenoidal velocity, and (d) monotonic decrease\nof the kinetic energy. Different from UPPE, the GePUP-E and GePUP-ES\nformulations are of strong forms and are designed for finite volume/difference\nmethods under the framework of method of lines. Furthermore, we develop\nsemi-discrete algorithms that preserve (c) and (d) and fully discrete\nalgorithms that are fourth-order accurate for velocity both in time and in\nspace. These algorithms employ algebraically stable time integrators in a\nblack-box manner and only consist of solving a sequence of linear equations in\neach time step. Results of numerical tests confirm our analysis.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"204 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GePUP-ES: High-order Energy-stable Projection Methods for the Incompressible Navier-Stokes Equations with No-slip Conditions\",\"authors\":\"Yang Li, Xu Wu, Jiatu Yan, Jiang Yang, Qinghai Zhang, Shubo Zhao\",\"doi\":\"arxiv-2409.11255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the unconstrained PPE (UPPE) formulation [Liu, Liu, & Pego 2007\\nComm. Pure Appl. Math., 60 pp. 1443], we previously proposed the GePUP\\nformulation [Zhang 2016 J. Sci. Comput., 67 pp. 1134] for numerically solving\\nthe incompressible Navier-Stokes equations (INSE) on no-slip domains. In this\\npaper, we propose GePUP-E and GePUP-ES, variants of GePUP that feature (a)\\nelectric boundary conditions with no explicit enforcement of the no-penetration\\ncondition, (b) equivalence to the no-slip INSE, (c) exponential decay of the\\ndivergence of an initially non-solenoidal velocity, and (d) monotonic decrease\\nof the kinetic energy. Different from UPPE, the GePUP-E and GePUP-ES\\nformulations are of strong forms and are designed for finite volume/difference\\nmethods under the framework of method of lines. Furthermore, we develop\\nsemi-discrete algorithms that preserve (c) and (d) and fully discrete\\nalgorithms that are fourth-order accurate for velocity both in time and in\\nspace. These algorithms employ algebraically stable time integrators in a\\nblack-box manner and only consist of solving a sequence of linear equations in\\neach time step. Results of numerical tests confirm our analysis.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受无约束 PPE (UPPE) 公式 [Liu, Liu, & Pego 2007Comm. Pure Appl. Math., 60 pp. 1443] 的启发,我们之前提出了 GePUP 公式 [Zhang 2016 J. Sci.在本文中,我们提出了 GePUP-E 和 GePUP-ES,它们是 GePUP 的变体,具有以下特点:(a)不明确执行无渗透条件的电边界条件;(b)等效于无滑动 INSE;(c)初始非滑动速度的发散呈指数衰减;(d)动能单调递减。与 UPPE 不同的是,GePUP-E 和 GePUP-ES 形式是强形式的,是在线性方法框架下为有限体积/差分方法设计的。此外,我们还开发了保留(c)和(d)的半离散算法和完全离散算法,这些算法在时间和空间上对速度都有四阶精度。这些算法以黑箱方式使用代数稳定的时间积分器,只需求解每个时间步的线性方程序列。数值测试结果证实了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GePUP-ES: High-order Energy-stable Projection Methods for the Incompressible Navier-Stokes Equations with No-slip Conditions
Inspired by the unconstrained PPE (UPPE) formulation [Liu, Liu, & Pego 2007 Comm. Pure Appl. Math., 60 pp. 1443], we previously proposed the GePUP formulation [Zhang 2016 J. Sci. Comput., 67 pp. 1134] for numerically solving the incompressible Navier-Stokes equations (INSE) on no-slip domains. In this paper, we propose GePUP-E and GePUP-ES, variants of GePUP that feature (a) electric boundary conditions with no explicit enforcement of the no-penetration condition, (b) equivalence to the no-slip INSE, (c) exponential decay of the divergence of an initially non-solenoidal velocity, and (d) monotonic decrease of the kinetic energy. Different from UPPE, the GePUP-E and GePUP-ES formulations are of strong forms and are designed for finite volume/difference methods under the framework of method of lines. Furthermore, we develop semi-discrete algorithms that preserve (c) and (d) and fully discrete algorithms that are fourth-order accurate for velocity both in time and in space. These algorithms employ algebraically stable time integrators in a black-box manner and only consist of solving a sequence of linear equations in each time step. Results of numerical tests confirm our analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信