刚性常微分方程的自适应时步法半隐式一步泰勒方案

S. Boscarino, E. Macca
{"title":"刚性常微分方程的自适应时步法半隐式一步泰勒方案","authors":"S. Boscarino, E. Macca","doi":"arxiv-2409.11990","DOIUrl":null,"url":null,"abstract":"In this study, we propose high-order implicit and semi-implicit schemes for\nsolving ordinary differential equations (ODEs) based on Taylor series\nexpansion. These methods are designed to handle stiff and non-stiff components\nwithin a unified framework, ensuring stability and accuracy. The schemes are\nderived and analyzed for their consistency and stability properties, showcasing\ntheir effectiveness in practical computational scenarios.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"204 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations\",\"authors\":\"S. Boscarino, E. Macca\",\"doi\":\"arxiv-2409.11990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose high-order implicit and semi-implicit schemes for\\nsolving ordinary differential equations (ODEs) based on Taylor series\\nexpansion. These methods are designed to handle stiff and non-stiff components\\nwithin a unified framework, ensuring stability and accuracy. The schemes are\\nderived and analyzed for their consistency and stability properties, showcasing\\ntheir effectiveness in practical computational scenarios.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"204 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了基于泰勒级数展开的高阶隐式和半隐式常微分方程求解方案。这些方法旨在统一框架内处理刚性和非刚性成分,确保稳定性和准确性。对这些方案的一致性和稳定性进行了计算和分析,展示了它们在实际计算场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Time-Step Semi-Implicit One-Step Taylor Scheme for Stiff Ordinary Differential Equations
In this study, we propose high-order implicit and semi-implicit schemes for solving ordinary differential equations (ODEs) based on Taylor series expansion. These methods are designed to handle stiff and non-stiff components within a unified framework, ensuring stability and accuracy. The schemes are derived and analyzed for their consistency and stability properties, showcasing their effectiveness in practical computational scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信