用于评估层势和体积势的轻量级、几何灵活的快速算法

Fredrik Fryklund, Leslie Greengard, Shidong Jiang, Samuel Potter
{"title":"用于评估层势和体积势的轻量级、几何灵活的快速算法","authors":"Fredrik Fryklund, Leslie Greengard, Shidong Jiang, Samuel Potter","doi":"arxiv-2409.11998","DOIUrl":null,"url":null,"abstract":"Over the last two decades, several fast, robust, and high-order accurate\nmethods have been developed for solving the Poisson equation in complicated\ngeometry using potential theory. In this approach, rather than discretizing the\npartial differential equation itself, one first evaluates a volume integral to\naccount for the source distribution within the domain, followed by solving a\nboundary integral equation to impose the specified boundary conditions. Here,\nwe present a new fast algorithm which is easy to implement and compatible with\nvirtually any discretization technique, including unstructured domain\ntriangulations, such as those used in standard finite element or finite volume\nmethods. Our approach combines earlier work on potential theory for the heat\nequation, asymptotic analysis, the nonuniform fast Fourier transform (NUFFT),\nand the dual-space multilevel kernel-splitting (DMK) framework. It is\ninsensitive to flaws in the triangulation, permitting not just nonconforming\nelements, but arbitrary aspect ratio triangles, gaps and various other\ndegeneracies. On a single CPU core, the scheme computes the solution at a rate\ncomparable to that of the fast Fourier transform (FFT) in work per gridpoint.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials\",\"authors\":\"Fredrik Fryklund, Leslie Greengard, Shidong Jiang, Samuel Potter\",\"doi\":\"arxiv-2409.11998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last two decades, several fast, robust, and high-order accurate\\nmethods have been developed for solving the Poisson equation in complicated\\ngeometry using potential theory. In this approach, rather than discretizing the\\npartial differential equation itself, one first evaluates a volume integral to\\naccount for the source distribution within the domain, followed by solving a\\nboundary integral equation to impose the specified boundary conditions. Here,\\nwe present a new fast algorithm which is easy to implement and compatible with\\nvirtually any discretization technique, including unstructured domain\\ntriangulations, such as those used in standard finite element or finite volume\\nmethods. Our approach combines earlier work on potential theory for the heat\\nequation, asymptotic analysis, the nonuniform fast Fourier transform (NUFFT),\\nand the dual-space multilevel kernel-splitting (DMK) framework. It is\\ninsensitive to flaws in the triangulation, permitting not just nonconforming\\nelements, but arbitrary aspect ratio triangles, gaps and various other\\ndegeneracies. On a single CPU core, the scheme computes the solution at a rate\\ncomparable to that of the fast Fourier transform (FFT) in work per gridpoint.\",\"PeriodicalId\":501162,\"journal\":{\"name\":\"arXiv - MATH - Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,已经开发出几种快速、稳健和高阶精确的方法,用于利用势理论求解复杂几何中的泊松方程。在这种方法中,我们不是将边际微分方程本身离散化,而是首先求体积积分来计算域内的源分布,然后求解边界积分方程来施加指定的边界条件。在这里,我们提出了一种新的快速算法,这种算法易于实现,而且几乎与任何离散化技术兼容,包括非结构化域三角测量,如标准有限元或有限体积方法中使用的算法。我们的方法结合了早先在氦方程势理论、渐近分析、非均匀快速傅立叶变换(NUFFT)和双空间多级内核拆分(DMK)框架方面的工作。它对三角剖分中的缺陷很敏感,不仅允许不规则的元素,还允许任意长宽比的三角形、间隙和其他各种退行性。在单个 CPU 内核上,该方案计算解的速度可与快速傅立叶变换 (FFT) 计算每个网格点的工作量相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight, Geometrically Flexible Fast Algorithm for the Evaluation of Layer and Volume Potentials
Over the last two decades, several fast, robust, and high-order accurate methods have been developed for solving the Poisson equation in complicated geometry using potential theory. In this approach, rather than discretizing the partial differential equation itself, one first evaluates a volume integral to account for the source distribution within the domain, followed by solving a boundary integral equation to impose the specified boundary conditions. Here, we present a new fast algorithm which is easy to implement and compatible with virtually any discretization technique, including unstructured domain triangulations, such as those used in standard finite element or finite volume methods. Our approach combines earlier work on potential theory for the heat equation, asymptotic analysis, the nonuniform fast Fourier transform (NUFFT), and the dual-space multilevel kernel-splitting (DMK) framework. It is insensitive to flaws in the triangulation, permitting not just nonconforming elements, but arbitrary aspect ratio triangles, gaps and various other degeneracies. On a single CPU core, the scheme computes the solution at a rate comparable to that of the fast Fourier transform (FFT) in work per gridpoint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信