{"title":"对启动过程中 Pelton 水轮机内的瞬态流动和能量耗散进行数值评估","authors":"Longgang Sun, Zhihu Wang, Hengte Zhou, Zhaoning Wang, Pengcheng Guo","doi":"10.1063/5.0228772","DOIUrl":null,"url":null,"abstract":"The Pelton turbine, known for its high application water head, wide efficient operating range, and rapid start-stop capability, is ideal for addressing intermittent and stochastic load issues. This study numerically analyzes the transient two-phase flow and energy dissipation during the startup of a Pelton turbine. Dynamic mesh technology controlled nozzle opening changes, and momentum balance equations managed runner rotation. Findings showed that the runner speed initially increased rapidly and then more slowly, and flow rate matched the nozzle opening variations. Runner torque first rose linearly, then decreased, with the fastest decline during nozzle closing. Hydraulic efficiency peaked early in nozzle reduction but then dropped sharply. Strong vortices formed due to upstream inflow and downstream backflow impact in the distributor pipe. The jet needle and guide vane improved flow in the converging section of nozzle, but flow began to diffuse with increased stroke. Initially, the jet spread fully on the bucket surface, but later only affected the bucket tips. Pressure fluctuations in the water supply mechanism were primarily due to jet needle motion, with higher amplitude during movement and lower when stationary. These fluctuations propagated upstream, weakening over distance. Reynolds stress work and turbulent kinetic energy generation, respectively, dominated energy transmission and energy dissipation, with their maximum contribution exceeding 96% and 70%. High-energy clusters corresponded to jet impact positions, highlighting jet-bucket interference as crucial for energy transport. This study established a performance evaluation method for Pelton turbine startups, supporting further investigation into characteristic parameters, flow evolution, and energy dissipation patterns.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"48 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical assessment of transient flow and energy dissipation in a Pelton turbine during startup\",\"authors\":\"Longgang Sun, Zhihu Wang, Hengte Zhou, Zhaoning Wang, Pengcheng Guo\",\"doi\":\"10.1063/5.0228772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Pelton turbine, known for its high application water head, wide efficient operating range, and rapid start-stop capability, is ideal for addressing intermittent and stochastic load issues. This study numerically analyzes the transient two-phase flow and energy dissipation during the startup of a Pelton turbine. Dynamic mesh technology controlled nozzle opening changes, and momentum balance equations managed runner rotation. Findings showed that the runner speed initially increased rapidly and then more slowly, and flow rate matched the nozzle opening variations. Runner torque first rose linearly, then decreased, with the fastest decline during nozzle closing. Hydraulic efficiency peaked early in nozzle reduction but then dropped sharply. Strong vortices formed due to upstream inflow and downstream backflow impact in the distributor pipe. The jet needle and guide vane improved flow in the converging section of nozzle, but flow began to diffuse with increased stroke. Initially, the jet spread fully on the bucket surface, but later only affected the bucket tips. Pressure fluctuations in the water supply mechanism were primarily due to jet needle motion, with higher amplitude during movement and lower when stationary. These fluctuations propagated upstream, weakening over distance. Reynolds stress work and turbulent kinetic energy generation, respectively, dominated energy transmission and energy dissipation, with their maximum contribution exceeding 96% and 70%. High-energy clusters corresponded to jet impact positions, highlighting jet-bucket interference as crucial for energy transport. This study established a performance evaluation method for Pelton turbine startups, supporting further investigation into characteristic parameters, flow evolution, and energy dissipation patterns.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228772\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0228772","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical assessment of transient flow and energy dissipation in a Pelton turbine during startup
The Pelton turbine, known for its high application water head, wide efficient operating range, and rapid start-stop capability, is ideal for addressing intermittent and stochastic load issues. This study numerically analyzes the transient two-phase flow and energy dissipation during the startup of a Pelton turbine. Dynamic mesh technology controlled nozzle opening changes, and momentum balance equations managed runner rotation. Findings showed that the runner speed initially increased rapidly and then more slowly, and flow rate matched the nozzle opening variations. Runner torque first rose linearly, then decreased, with the fastest decline during nozzle closing. Hydraulic efficiency peaked early in nozzle reduction but then dropped sharply. Strong vortices formed due to upstream inflow and downstream backflow impact in the distributor pipe. The jet needle and guide vane improved flow in the converging section of nozzle, but flow began to diffuse with increased stroke. Initially, the jet spread fully on the bucket surface, but later only affected the bucket tips. Pressure fluctuations in the water supply mechanism were primarily due to jet needle motion, with higher amplitude during movement and lower when stationary. These fluctuations propagated upstream, weakening over distance. Reynolds stress work and turbulent kinetic energy generation, respectively, dominated energy transmission and energy dissipation, with their maximum contribution exceeding 96% and 70%. High-energy clusters corresponded to jet impact positions, highlighting jet-bucket interference as crucial for energy transport. This study established a performance evaluation method for Pelton turbine startups, supporting further investigation into characteristic parameters, flow evolution, and energy dissipation patterns.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves