Emilio J. Estrada, Sergi Gonzàlez-Solís, Adolfo Guevara, Pablo Roig
{"title":"共振手性理论中改进的 $π^0,η,η^{prime}$ 过渡形式因子及其 $a_μ^{rm{HLbL}}$ 贡献","authors":"Emilio J. Estrada, Sergi Gonzàlez-Solís, Adolfo Guevara, Pablo Roig","doi":"arxiv-2409.10503","DOIUrl":null,"url":null,"abstract":"Working with Resonance Chiral Theory, within the two resonance multiplets\nsaturation scheme, we satisfy leading (and some subleading) chiral and\nasymptotic QCD constraints and accurately fit simultaneously the\n$\\pi^{0},\\eta,\\eta^{\\prime}$ transition form factors, for single and double\nvirtuality. In the latter case, we supplement the few available measurements\nwith lattice data to ensure a faithful description. Mainly due to the new\nresults for the doubly virtual case, we improve over existing descriptions for\nthe $\\eta$ and $\\eta^\\prime$. Our evaluation of the corresponding pole\ncontributions to the hadronic light-by-light piece of the muon $g-2$ read:\n$a_\\mu^{\\pi^{0}\\text{-}\\rm{pole}}=\\left(60.4\\pm0.5^{+3.2}_{-1.8}\\right)\\times10^{-11}$,\n$a_\\mu^{\\eta\\text{-}\\mathrm{pole}}=\\left(15.2\\pm0.5^{+1.1}_{-0.7}\\right)\\times10^{-11}$\nand\n$a_\\mu^{\\eta^\\prime\\text{-}\\rm{pole}}=\\left(14.4\\pm0.8^{+1.4}_{-1.0}\\right)\\times10^{-11}$,\nfor a total of\n$a_\\mu^{\\pi^0+\\eta+\\eta^{\\prime}\\text{-}\\rm{pole}}=\\left(90.0\\pm1.1^{+3.7}_{-2.2}\\right)\\times10^{-11}$,\nwhere the first and second error are the statistical and systematic\nuncertainties, respectively.","PeriodicalId":501067,"journal":{"name":"arXiv - PHYS - High Energy Physics - Phenomenology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved $π^0,η,η^{\\\\prime}$ transition form factors in resonance chiral theory and their $a_μ^{\\\\rm{HLbL}}$ contribution\",\"authors\":\"Emilio J. Estrada, Sergi Gonzàlez-Solís, Adolfo Guevara, Pablo Roig\",\"doi\":\"arxiv-2409.10503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Working with Resonance Chiral Theory, within the two resonance multiplets\\nsaturation scheme, we satisfy leading (and some subleading) chiral and\\nasymptotic QCD constraints and accurately fit simultaneously the\\n$\\\\pi^{0},\\\\eta,\\\\eta^{\\\\prime}$ transition form factors, for single and double\\nvirtuality. In the latter case, we supplement the few available measurements\\nwith lattice data to ensure a faithful description. Mainly due to the new\\nresults for the doubly virtual case, we improve over existing descriptions for\\nthe $\\\\eta$ and $\\\\eta^\\\\prime$. Our evaluation of the corresponding pole\\ncontributions to the hadronic light-by-light piece of the muon $g-2$ read:\\n$a_\\\\mu^{\\\\pi^{0}\\\\text{-}\\\\rm{pole}}=\\\\left(60.4\\\\pm0.5^{+3.2}_{-1.8}\\\\right)\\\\times10^{-11}$,\\n$a_\\\\mu^{\\\\eta\\\\text{-}\\\\mathrm{pole}}=\\\\left(15.2\\\\pm0.5^{+1.1}_{-0.7}\\\\right)\\\\times10^{-11}$\\nand\\n$a_\\\\mu^{\\\\eta^\\\\prime\\\\text{-}\\\\rm{pole}}=\\\\left(14.4\\\\pm0.8^{+1.4}_{-1.0}\\\\right)\\\\times10^{-11}$,\\nfor a total of\\n$a_\\\\mu^{\\\\pi^0+\\\\eta+\\\\eta^{\\\\prime}\\\\text{-}\\\\rm{pole}}=\\\\left(90.0\\\\pm1.1^{+3.7}_{-2.2}\\\\right)\\\\times10^{-11}$,\\nwhere the first and second error are the statistical and systematic\\nuncertainties, respectively.\",\"PeriodicalId\":501067,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Phenomenology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Phenomenology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过共振手性理论(Resonance Chiral Theory),在两个共振多重饱和方案中,我们满足了领先的(以及一些次领先的)手性和渐近QCD约束,并同时精确地拟合了单虚拟性和双虚拟性的$/pi^{0},\eta,\eta^\{prime}$过渡形式因子。在后一种情况下,我们用晶格数据补充了为数不多的可用测量数据,以确保忠实描述。主要由于双虚情况下的新结果,我们改进了对$\eta$和$\eta^\prime$的现有描述。我们对μ介子$g-2$的强子逐光片的相应极点贡献的评估是:$a_\mu^{pi^{0}\text{-}\rm{pole}}=\left(60.4\pm0.5^{+3.2}_{-1.8}\right)\times10^{-11}$,$a_\mu^{\eta\text{-}\mathrm{pole}}=\left(15.2\pm0.5^{+1.1}_{-0.7}\right)\times10^{-11}$and$a_\mu^{\eta^\prime\text{-}\rm{pole}}=\left(14.4\pm0.8^{+1.4}_{-1.0}\right)\times10^{-11}$,for a total of$a_\mu^{\pi^0+\eta+\eta^{\prime}\text{-}\rm{pole}}=\left(90.0/pm1.1^{+3.7}_{-2.2}/right)/times10^{-11}$,其中第一个和第二个误差分别是统计不确定性和系统不确定性。
Improved $π^0,η,η^{\prime}$ transition form factors in resonance chiral theory and their $a_μ^{\rm{HLbL}}$ contribution
Working with Resonance Chiral Theory, within the two resonance multiplets
saturation scheme, we satisfy leading (and some subleading) chiral and
asymptotic QCD constraints and accurately fit simultaneously the
$\pi^{0},\eta,\eta^{\prime}$ transition form factors, for single and double
virtuality. In the latter case, we supplement the few available measurements
with lattice data to ensure a faithful description. Mainly due to the new
results for the doubly virtual case, we improve over existing descriptions for
the $\eta$ and $\eta^\prime$. Our evaluation of the corresponding pole
contributions to the hadronic light-by-light piece of the muon $g-2$ read:
$a_\mu^{\pi^{0}\text{-}\rm{pole}}=\left(60.4\pm0.5^{+3.2}_{-1.8}\right)\times10^{-11}$,
$a_\mu^{\eta\text{-}\mathrm{pole}}=\left(15.2\pm0.5^{+1.1}_{-0.7}\right)\times10^{-11}$
and
$a_\mu^{\eta^\prime\text{-}\rm{pole}}=\left(14.4\pm0.8^{+1.4}_{-1.0}\right)\times10^{-11}$,
for a total of
$a_\mu^{\pi^0+\eta+\eta^{\prime}\text{-}\rm{pole}}=\left(90.0\pm1.1^{+3.7}_{-2.2}\right)\times10^{-11}$,
where the first and second error are the statistical and systematic
uncertainties, respectively.