{"title":"利用欧洲核子研究中心-空间站 H4 正电子束发现真钚的可行性研究","authors":"Ruben Gargiulo, Elisa Di Meco, Stefano Palmisano","doi":"arxiv-2409.11342","DOIUrl":null,"url":null,"abstract":"True muonium ($\\mu^+\\mu^-$) is one of the heaviest and smallest\nelectromagnetic bound states not containing hadrons, and has never been\nobserved so far. %Unlike atoms containing $\\tau$ particles, the muon lifetime\nis long enough to allow observation of true muonium (TM) decays and\ntransitions. In this work it is shown that the spin-1 TM state (ortho-TM) can\nbe observed at a discovery level of significance in three months at the CERN\nSPS North-Area H4A beam line, using 43.7 GeV secondary positrons. In this way,\nby impinging the positrons on multiple thin low-Z targets, ortho-TM, which\ndecays predominantly to $e^+e^-$, can be produced from $e^+e^- \\to TM$\ninteraction on resonance ($\\sqrt{s} \\sim 2m_{\\mu}$).","PeriodicalId":501067,"journal":{"name":"arXiv - PHYS - High Energy Physics - Phenomenology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of True Muonium discovery with CERN-SPS H4 positron beam\",\"authors\":\"Ruben Gargiulo, Elisa Di Meco, Stefano Palmisano\",\"doi\":\"arxiv-2409.11342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"True muonium ($\\\\mu^+\\\\mu^-$) is one of the heaviest and smallest\\nelectromagnetic bound states not containing hadrons, and has never been\\nobserved so far. %Unlike atoms containing $\\\\tau$ particles, the muon lifetime\\nis long enough to allow observation of true muonium (TM) decays and\\ntransitions. In this work it is shown that the spin-1 TM state (ortho-TM) can\\nbe observed at a discovery level of significance in three months at the CERN\\nSPS North-Area H4A beam line, using 43.7 GeV secondary positrons. In this way,\\nby impinging the positrons on multiple thin low-Z targets, ortho-TM, which\\ndecays predominantly to $e^+e^-$, can be produced from $e^+e^- \\\\to TM$\\ninteraction on resonance ($\\\\sqrt{s} \\\\sim 2m_{\\\\mu}$).\",\"PeriodicalId\":501067,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Phenomenology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Phenomenology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility study of True Muonium discovery with CERN-SPS H4 positron beam
True muonium ($\mu^+\mu^-$) is one of the heaviest and smallest
electromagnetic bound states not containing hadrons, and has never been
observed so far. %Unlike atoms containing $\tau$ particles, the muon lifetime
is long enough to allow observation of true muonium (TM) decays and
transitions. In this work it is shown that the spin-1 TM state (ortho-TM) can
be observed at a discovery level of significance in three months at the CERN
SPS North-Area H4A beam line, using 43.7 GeV secondary positrons. In this way,
by impinging the positrons on multiple thin low-Z targets, ortho-TM, which
decays predominantly to $e^+e^-$, can be produced from $e^+e^- \to TM$
interaction on resonance ($\sqrt{s} \sim 2m_{\mu}$).