后临界状态下流过两个直列粗糙圆柱体的水流

IF 4.1 2区 工程技术 Q1 MECHANICS
Anil Pasam, Daniel Tudball Smith, David Burton, Mark C. Thompson
{"title":"后临界状态下流过两个直列粗糙圆柱体的水流","authors":"Anil Pasam, Daniel Tudball Smith, David Burton, Mark C. Thompson","doi":"10.1063/5.0221390","DOIUrl":null,"url":null,"abstract":"This study investigates the flow behavior over roughened inline cylinders for postcritical flow, a parameter space with relatively little prior scrutiny. Two cylinders of the same relative surface roughness, ks/D=1.9×10−3, separated by a pitch (i.e., L, distance between the centers of two cylinders) between 1.175≤L/D≤10 are studied at Reynolds numbers from 3×105 to 6×105 using unsteady surface pressure measurements. As pitch ratio is increased from L/D=1.175, CD of the downstream cylinder increases sharply at (L/D)c=3.25. This critical pitch ratio (L/D)c is toward the lower end of the reported range for subcritical smooth cylinders. Asymmetric mean gap flow along with alternating reattachment is found for 1.5≤L/D<2.25 (i.e., two asymmetric modes in the gap, mode 1 and mode 2, that are the reflections of each other), and symmetric gap flow with a continuous reattachment is found for 2.25<L/D≤3. The gap flow is also symmetric for the closest pitch ratio tested of L/D=1.175. While the change in upstream cylinder drag coefficient with Reynolds number broadly follows that of an isolated cylinder, for the downstream cylinder, it is approximately independent. The critical separation is also insensitive to Reynolds number within 3×105≤Re≤6×105. Transitions between the reattachment and the co-shedding flow are predominantly continuous over the spanwise planes tested. On the other hand, alternating reattachment occurs in spanwise cells, where one sectional measurement exhibits the asymmetric mode 1 while a spanwise-adjacent section exhibits the asymmetric mode 2 or even symmetric flow. Previously reported maxima in the fluctuating lift and drag coefficients of the downstream cylinder at L/D≈2.4 at subcritical Reynolds numbers are absent in the current investigation.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow over two inline rough cylinders in the postcritical regime\",\"authors\":\"Anil Pasam, Daniel Tudball Smith, David Burton, Mark C. Thompson\",\"doi\":\"10.1063/5.0221390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the flow behavior over roughened inline cylinders for postcritical flow, a parameter space with relatively little prior scrutiny. Two cylinders of the same relative surface roughness, ks/D=1.9×10−3, separated by a pitch (i.e., L, distance between the centers of two cylinders) between 1.175≤L/D≤10 are studied at Reynolds numbers from 3×105 to 6×105 using unsteady surface pressure measurements. As pitch ratio is increased from L/D=1.175, CD of the downstream cylinder increases sharply at (L/D)c=3.25. This critical pitch ratio (L/D)c is toward the lower end of the reported range for subcritical smooth cylinders. Asymmetric mean gap flow along with alternating reattachment is found for 1.5≤L/D<2.25 (i.e., two asymmetric modes in the gap, mode 1 and mode 2, that are the reflections of each other), and symmetric gap flow with a continuous reattachment is found for 2.25<L/D≤3. The gap flow is also symmetric for the closest pitch ratio tested of L/D=1.175. While the change in upstream cylinder drag coefficient with Reynolds number broadly follows that of an isolated cylinder, for the downstream cylinder, it is approximately independent. The critical separation is also insensitive to Reynolds number within 3×105≤Re≤6×105. Transitions between the reattachment and the co-shedding flow are predominantly continuous over the spanwise planes tested. On the other hand, alternating reattachment occurs in spanwise cells, where one sectional measurement exhibits the asymmetric mode 1 while a spanwise-adjacent section exhibits the asymmetric mode 2 or even symmetric flow. Previously reported maxima in the fluctuating lift and drag coefficients of the downstream cylinder at L/D≈2.4 at subcritical Reynolds numbers are absent in the current investigation.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0221390\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0221390","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究针对后临界流研究了经过粗糙处理的直列圆柱体上的流动行为,之前对这一参数空间的研究相对较少。在雷诺数为 3×105 到 6×105 的条件下,使用非稳定表面压力测量法研究了两个相对表面粗糙度相同的圆柱体(ks/D=1.9×10-3),它们之间的间距(即 L,两个圆柱体中心之间的距离)在 1.175≤L/D≤10 之间。随着螺距比从 L/D=1.175 开始增大,下游气缸的 CD 在 (L/D)c=3.25 时急剧增大。这个临界节距比(L/D)c 接近报告的亚临界光滑圆柱体范围的下限。在 1.5≤L/D<2.25 时,发现非对称平均间隙流和交替再附着(即间隙中的两个非对称模式,模式 1 和模式 2,是彼此的反射),在 2.25<L/D≤3 时,发现对称间隙流和连续再附着。在测试的最接近螺距比 L/D=1.175 时,间隙流也是对称的。上游气缸阻力系数随雷诺数的变化大致与孤立气缸的阻力系数相同,而下游气缸的阻力系数则近似独立。临界分离度在 3×105≤Re≤6×105 范围内对雷诺数也不敏感。在测试的跨度平面上,重新附着流和共分离流之间的过渡主要是连续的。另一方面,在跨度单元中会出现交替的再附着现象,其中一个截面的测量结果显示出非对称模式 1,而相邻截面则显示出非对称模式 2,甚至是对称流。在亚临界雷诺数下,L/D≈2.4 时下游气缸的波动升力和阻力系数达到最大值,但在本次研究中却没有出现这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow over two inline rough cylinders in the postcritical regime
This study investigates the flow behavior over roughened inline cylinders for postcritical flow, a parameter space with relatively little prior scrutiny. Two cylinders of the same relative surface roughness, ks/D=1.9×10−3, separated by a pitch (i.e., L, distance between the centers of two cylinders) between 1.175≤L/D≤10 are studied at Reynolds numbers from 3×105 to 6×105 using unsteady surface pressure measurements. As pitch ratio is increased from L/D=1.175, CD of the downstream cylinder increases sharply at (L/D)c=3.25. This critical pitch ratio (L/D)c is toward the lower end of the reported range for subcritical smooth cylinders. Asymmetric mean gap flow along with alternating reattachment is found for 1.5≤L/D<2.25 (i.e., two asymmetric modes in the gap, mode 1 and mode 2, that are the reflections of each other), and symmetric gap flow with a continuous reattachment is found for 2.25<L/D≤3. The gap flow is also symmetric for the closest pitch ratio tested of L/D=1.175. While the change in upstream cylinder drag coefficient with Reynolds number broadly follows that of an isolated cylinder, for the downstream cylinder, it is approximately independent. The critical separation is also insensitive to Reynolds number within 3×105≤Re≤6×105. Transitions between the reattachment and the co-shedding flow are predominantly continuous over the spanwise planes tested. On the other hand, alternating reattachment occurs in spanwise cells, where one sectional measurement exhibits the asymmetric mode 1 while a spanwise-adjacent section exhibits the asymmetric mode 2 or even symmetric flow. Previously reported maxima in the fluctuating lift and drag coefficients of the downstream cylinder at L/D≈2.4 at subcritical Reynolds numbers are absent in the current investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信