使用计算网格适应方法数值求解一维前向磁层探测问题

IF 0.4 Q4 MATHEMATICS, APPLIED
S. N. Sklyar, O. B. Zabinyakova
{"title":"使用计算网格适应方法数值求解一维前向磁层探测问题","authors":"S. N. Sklyar, O. B. Zabinyakova","doi":"10.1134/s1995423924030078","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper considers an implementation of an adaptive computational grid constructing algorithm in a numerical solution of the one-dimensional forward magnetotelluric sounding problem (the Tikhonov–Cagniard problem). The numerical solution of the problem is realized by a method of local integral equations which was proposed by the authors previously. The adaptive computational grid construction is based on geometrical principles of optimizing a piecewise constant interpolant of the electrical conductivity function to be approximated. Numerical experiments are carried out to study and illustrate the effectiveness of the combined method. The algorithm is tested on the Kato–Kikuchi model with a known exact solution.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"29 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of the One-Dimensional Forward Magnetotelluric Sounding Problem Using a Computational Grid Adaptation Approach\",\"authors\":\"S. N. Sklyar, O. B. Zabinyakova\",\"doi\":\"10.1134/s1995423924030078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper considers an implementation of an adaptive computational grid constructing algorithm in a numerical solution of the one-dimensional forward magnetotelluric sounding problem (the Tikhonov–Cagniard problem). The numerical solution of the problem is realized by a method of local integral equations which was proposed by the authors previously. The adaptive computational grid construction is based on geometrical principles of optimizing a piecewise constant interpolant of the electrical conductivity function to be approximated. Numerical experiments are carried out to study and illustrate the effectiveness of the combined method. The algorithm is tested on the Kato–Kikuchi model with a known exact solution.</p>\",\"PeriodicalId\":43697,\"journal\":{\"name\":\"Numerical Analysis and Applications\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995423924030078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423924030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了自适应计算网格构建算法在一维前向磁探测问题(Tikhonov-Cagniard 问题)数值求解中的应用。该问题的数值求解是通过作者之前提出的局部积分方程法实现的。自适应计算网格的构建是基于优化要近似的导电函数的片断常数插值的几何原理。为了研究和说明组合方法的有效性,我们进行了数值实验。该算法在已知精确解的 Kato-Kikuchi 模型上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Solution of the One-Dimensional Forward Magnetotelluric Sounding Problem Using a Computational Grid Adaptation Approach

Numerical Solution of the One-Dimensional Forward Magnetotelluric Sounding Problem Using a Computational Grid Adaptation Approach

Abstract

The paper considers an implementation of an adaptive computational grid constructing algorithm in a numerical solution of the one-dimensional forward magnetotelluric sounding problem (the Tikhonov–Cagniard problem). The numerical solution of the problem is realized by a method of local integral equations which was proposed by the authors previously. The adaptive computational grid construction is based on geometrical principles of optimizing a piecewise constant interpolant of the electrical conductivity function to be approximated. Numerical experiments are carried out to study and illustrate the effectiveness of the combined method. The algorithm is tested on the Kato–Kikuchi model with a known exact solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信