利用赫米特插值法实现时空里兹-卡普托变阶分数波方程的显式有限差分近似法

IF 0.4 Q4 MATHEMATICS, APPLIED
Chol Won O, Won Myong Ro, Yun Chol Kim
{"title":"利用赫米特插值法实现时空里兹-卡普托变阶分数波方程的显式有限差分近似法","authors":"Chol Won O, Won Myong Ro, Yun Chol Kim","doi":"10.1134/s1995423924030054","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Variable order fractional operators can be used in various physical and biological applications where rates of change of the quantity of interest may depend on space and/or time. In this paper, we propose an explicit finite difference approximation for space-time Riesz–Caputo variable order fractional wave equation with initial and boundary conditions in a finite domain. The proposed scheme is conditionally stable and has global truncation error <span>\\(O(\\tau^{2}+h^{2})\\)</span>. We also present a numerical experiment to verify the efficiency of the proposed scheme.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"206 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Explicit Finite Difference Approximation for Space-Time Riesz–Caputo Variable Order Fractional Wave Equation Using Hermitian Interpolation\",\"authors\":\"Chol Won O, Won Myong Ro, Yun Chol Kim\",\"doi\":\"10.1134/s1995423924030054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Variable order fractional operators can be used in various physical and biological applications where rates of change of the quantity of interest may depend on space and/or time. In this paper, we propose an explicit finite difference approximation for space-time Riesz–Caputo variable order fractional wave equation with initial and boundary conditions in a finite domain. The proposed scheme is conditionally stable and has global truncation error <span>\\\\(O(\\\\tau^{2}+h^{2})\\\\)</span>. We also present a numerical experiment to verify the efficiency of the proposed scheme.</p>\",\"PeriodicalId\":43697,\"journal\":{\"name\":\"Numerical Analysis and Applications\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995423924030054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423924030054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 变阶分数算子可用于各种物理和生物应用中,其中相关量的变化率可能取决于空间和/或时间。在本文中,我们提出了一种显式有限差分近似方法,用于有限域中具有初始条件和边界条件的时空 Riesz-Caputo 变阶分数波方程。所提出的方案具有条件稳定性和全局截断误差 \(O(\tau^{2}+h^{2})\)。我们还通过数值实验验证了所提方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Explicit Finite Difference Approximation for Space-Time Riesz–Caputo Variable Order Fractional Wave Equation Using Hermitian Interpolation

An Explicit Finite Difference Approximation for Space-Time Riesz–Caputo Variable Order Fractional Wave Equation Using Hermitian Interpolation

Abstract

Variable order fractional operators can be used in various physical and biological applications where rates of change of the quantity of interest may depend on space and/or time. In this paper, we propose an explicit finite difference approximation for space-time Riesz–Caputo variable order fractional wave equation with initial and boundary conditions in a finite domain. The proposed scheme is conditionally stable and has global truncation error \(O(\tau^{2}+h^{2})\). We also present a numerical experiment to verify the efficiency of the proposed scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信