带卷积核的新一类非线性二阶积分微分 Volterra 方程的存在性与数值解法

IF 0.4 Q4 MATHEMATICS, APPLIED
S. Lemita, M L. Guessoumi
{"title":"带卷积核的新一类非线性二阶积分微分 Volterra 方程的存在性与数值解法","authors":"S. Lemita, M L. Guessoumi","doi":"10.1134/s1995423924030042","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nyström method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"17 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel\",\"authors\":\"S. Lemita, M L. Guessoumi\",\"doi\":\"10.1134/s1995423924030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nyström method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.</p>\",\"PeriodicalId\":43697,\"journal\":{\"name\":\"Numerical Analysis and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1995423924030042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423924030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究了一类新的具有卷积核的非线性二阶整微分 Volterra 方程。我们利用 Schauder 定点定理推导出一些充分条件,以确定解的存在性和唯一性。此外,我们还应用 Nyström 方法求得了所提 Volterra 方程的近似解。我们还给出了一个数值示例来验证所得出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel

On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel

Abstract

This paper considers a new class of nonlinear second degree integro-differential Volterra equation with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using Schauder fixed point theorem. Moreover, the Nyström method is applied to obtain the approximate solution of the proposed Volterra equation. A numerical examples are given to validate the adduced results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信