{"title":"粘性效应对带有阻尼板的双体波浪能转换器水动力性能的影响","authors":"Bei Chu, Boen Zhou, Songlin Zhou, Xianchao Zhao, Huqing She, Weixin Chen, Yegao Qu","doi":"10.1063/5.0230250","DOIUrl":null,"url":null,"abstract":"In this study, the hydrodynamic forces and power absorption performance of an autonomous underwater vehicle (AUV)-based two-body wave energy converter (2BWEC) are investigated. A theoretical model is developed within the framework of linear potential flow to solve for added mass, radiation damping, and wave excitation force using the matched eigenfunction expansion method (MEEM). A computational fluid dynamics (CFD) model is employed to account for vortex-shedding effects of the floater and inner cylinder with a damping plate under various excitation conditions. Empirical formulas for supplementary added mass and drag coefficients caused by flow separation are proposed based on curve-fitting the differences between CFD results and MEEM calculations. These formulas are integrated into motion equations to enhance accuracy in evaluating the power absorption of the 2BWEC. It has been found that in the context of viscous flow, both the added mass and damping coefficients are increased, particularly for the inner cylinder with a damping plate. In addition, the viscous hydrodynamic coefficients exhibit strong dependence on the Keulegan–Carpenter number, while showing insensitivity to changes in the frequency parameter β. The supplementary (viscous) added mass provides additional inertia for the AUV with a limited mass itself, which is advantageous for the power absorption of the AUV-based 2BWEC. Conversely, the presence of viscous damping from the damping plate impedes wave energy capture.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"21 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscous effects on the hydrodynamic performance of a two-body wave energy converter with a damping plate\",\"authors\":\"Bei Chu, Boen Zhou, Songlin Zhou, Xianchao Zhao, Huqing She, Weixin Chen, Yegao Qu\",\"doi\":\"10.1063/5.0230250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the hydrodynamic forces and power absorption performance of an autonomous underwater vehicle (AUV)-based two-body wave energy converter (2BWEC) are investigated. A theoretical model is developed within the framework of linear potential flow to solve for added mass, radiation damping, and wave excitation force using the matched eigenfunction expansion method (MEEM). A computational fluid dynamics (CFD) model is employed to account for vortex-shedding effects of the floater and inner cylinder with a damping plate under various excitation conditions. Empirical formulas for supplementary added mass and drag coefficients caused by flow separation are proposed based on curve-fitting the differences between CFD results and MEEM calculations. These formulas are integrated into motion equations to enhance accuracy in evaluating the power absorption of the 2BWEC. It has been found that in the context of viscous flow, both the added mass and damping coefficients are increased, particularly for the inner cylinder with a damping plate. In addition, the viscous hydrodynamic coefficients exhibit strong dependence on the Keulegan–Carpenter number, while showing insensitivity to changes in the frequency parameter β. The supplementary (viscous) added mass provides additional inertia for the AUV with a limited mass itself, which is advantageous for the power absorption of the AUV-based 2BWEC. Conversely, the presence of viscous damping from the damping plate impedes wave energy capture.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0230250\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0230250","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Viscous effects on the hydrodynamic performance of a two-body wave energy converter with a damping plate
In this study, the hydrodynamic forces and power absorption performance of an autonomous underwater vehicle (AUV)-based two-body wave energy converter (2BWEC) are investigated. A theoretical model is developed within the framework of linear potential flow to solve for added mass, radiation damping, and wave excitation force using the matched eigenfunction expansion method (MEEM). A computational fluid dynamics (CFD) model is employed to account for vortex-shedding effects of the floater and inner cylinder with a damping plate under various excitation conditions. Empirical formulas for supplementary added mass and drag coefficients caused by flow separation are proposed based on curve-fitting the differences between CFD results and MEEM calculations. These formulas are integrated into motion equations to enhance accuracy in evaluating the power absorption of the 2BWEC. It has been found that in the context of viscous flow, both the added mass and damping coefficients are increased, particularly for the inner cylinder with a damping plate. In addition, the viscous hydrodynamic coefficients exhibit strong dependence on the Keulegan–Carpenter number, while showing insensitivity to changes in the frequency parameter β. The supplementary (viscous) added mass provides additional inertia for the AUV with a limited mass itself, which is advantageous for the power absorption of the AUV-based 2BWEC. Conversely, the presence of viscous damping from the damping plate impedes wave energy capture.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves