加载速率对砂岩颗粒周期性结构调整特性的影响

IF 4.1 2区 工程技术 Q1 MECHANICS
Tengfei Ma, Quanle Zou, Fanjie Kong, Qican Ran, Dengke Qin, Yulin Hu, Feixiang Lv, Haolong Zheng
{"title":"加载速率对砂岩颗粒周期性结构调整特性的影响","authors":"Tengfei Ma, Quanle Zou, Fanjie Kong, Qican Ran, Dengke Qin, Yulin Hu, Feixiang Lv, Haolong Zheng","doi":"10.1063/5.0218578","DOIUrl":null,"url":null,"abstract":"During underground coal seam mining, changes in the working face advancement rate can easily affect the compaction state of granules in the collapse zone. This is an important factor in the induction of gas disasters and surface subsidence in mining areas. In this work, a cyclic loading and unloading mechanical test of granules under different loading rates was carried out. The changes in mechanical parameters of the granules at various stages were investigated. It is shown that the strain of each group of specimens under cyclic loading shows an increasing trend and the final strain increases with the loading rate. The input energy of the granules increases under cyclic loading, and under a low loading rate, the compaction force needs to overcome interparticle friction to destroy the relatively stable structure, which results in a need for more energy to achieve the same level of deformation. The acoustic emission ringing counts of each group of granules specimens show an overall increasing trend, with the highest proportion of ringing counts in the first loading stage. The compaction of pores and filling of particles under cyclic loading is a “uniform compaction, stable change, slow adjustment” dynamic process. When the loading is slow, the relative positions of the granule particles in each stress gradient are more adequately adjusted. The results of this study provide important theoretical support for the scientific formulation of gas control strategies and the prevention of surface subsidence in air-mining zones under different mining speeds.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"101 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of loading rate on characteristics of cyclic structural adjustment of sandstone granules\",\"authors\":\"Tengfei Ma, Quanle Zou, Fanjie Kong, Qican Ran, Dengke Qin, Yulin Hu, Feixiang Lv, Haolong Zheng\",\"doi\":\"10.1063/5.0218578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During underground coal seam mining, changes in the working face advancement rate can easily affect the compaction state of granules in the collapse zone. This is an important factor in the induction of gas disasters and surface subsidence in mining areas. In this work, a cyclic loading and unloading mechanical test of granules under different loading rates was carried out. The changes in mechanical parameters of the granules at various stages were investigated. It is shown that the strain of each group of specimens under cyclic loading shows an increasing trend and the final strain increases with the loading rate. The input energy of the granules increases under cyclic loading, and under a low loading rate, the compaction force needs to overcome interparticle friction to destroy the relatively stable structure, which results in a need for more energy to achieve the same level of deformation. The acoustic emission ringing counts of each group of granules specimens show an overall increasing trend, with the highest proportion of ringing counts in the first loading stage. The compaction of pores and filling of particles under cyclic loading is a “uniform compaction, stable change, slow adjustment” dynamic process. When the loading is slow, the relative positions of the granule particles in each stress gradient are more adequately adjusted. The results of this study provide important theoretical support for the scientific formulation of gas control strategies and the prevention of surface subsidence in air-mining zones under different mining speeds.\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218578\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0218578","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在地下煤层开采过程中,工作面推进速度的变化很容易影响塌陷区颗粒的压实状态。这是诱发矿区瓦斯灾害和地表沉陷的重要因素。在这项工作中,对不同加载速率下的粒料进行了循环加载和卸载力学试验。研究了颗粒在不同阶段的力学参数变化。结果表明,各组试样在循环加载下的应变呈上升趋势,最终应变随加载速率的增加而增加。在循环加载下,颗粒的输入能量增加,在低加载速率下,压实力需要克服颗粒间的摩擦力才能破坏相对稳定的结构,这导致需要更多的能量才能实现相同程度的变形。各组颗粒试样的声发射振铃次数总体呈上升趋势,其中第一加载阶段的振铃次数比例最高。循环加载下的孔隙压实和颗粒填充是一个 "均匀压实、稳定变化、缓慢调整 "的动态过程。当加载速度较慢时,颗粒粒子在各应力梯度中的相对位置会得到较为充分的调整。该研究结果为科学制定瓦斯防治策略、预防不同开采速度下采空区地表沉陷提供了重要的理论支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of loading rate on characteristics of cyclic structural adjustment of sandstone granules
During underground coal seam mining, changes in the working face advancement rate can easily affect the compaction state of granules in the collapse zone. This is an important factor in the induction of gas disasters and surface subsidence in mining areas. In this work, a cyclic loading and unloading mechanical test of granules under different loading rates was carried out. The changes in mechanical parameters of the granules at various stages were investigated. It is shown that the strain of each group of specimens under cyclic loading shows an increasing trend and the final strain increases with the loading rate. The input energy of the granules increases under cyclic loading, and under a low loading rate, the compaction force needs to overcome interparticle friction to destroy the relatively stable structure, which results in a need for more energy to achieve the same level of deformation. The acoustic emission ringing counts of each group of granules specimens show an overall increasing trend, with the highest proportion of ringing counts in the first loading stage. The compaction of pores and filling of particles under cyclic loading is a “uniform compaction, stable change, slow adjustment” dynamic process. When the loading is slow, the relative positions of the granule particles in each stress gradient are more adequately adjusted. The results of this study provide important theoretical support for the scientific formulation of gas control strategies and the prevention of surface subsidence in air-mining zones under different mining speeds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信