软核壳微凝胶的正交叠加流变仪

IF 2.3 3区 工程技术 Q2 MECHANICS
Panagiota Bogri, Gabriele Pagani, Jan Vermant, Joris Sprakel, George Petekidis
{"title":"软核壳微凝胶的正交叠加流变仪","authors":"Panagiota Bogri,&nbsp;Gabriele Pagani,&nbsp;Jan Vermant,&nbsp;Joris Sprakel,&nbsp;George Petekidis","doi":"10.1007/s00397-024-01469-5","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanisms of flow in suspensions of soft particles above the glass-transition volume fraction and in the jammed state were probed using orthogonal superposition rheometry (OSR). A small amplitude oscillatory shear flow is superimposed orthogonally onto a steady shear flow, which allows monitoring the viscoelastic spectra of sheared jammed core–shell microgels during flow. The characteristic crossover frequency <i>ω</i><sub>c</sub>, deduced from the viscoelastic spectrum, provides information about the shear-induced structural relaxation time, which is connected to the microscopic yielding mechanism of cage breaking. The shear rate evolution of the crossover frequency is used to achieve a superposition of all spectra and get a better insight of the flow mechanism. Despite their inherent softness, the hybrid core–shell microgels exhibit similarities with hard sphere-like flow behavior, with the main difference that for the microgels, the transition from a glassy to a jammed state introduces a volume fraction dependence of the scaling of <i>ω</i><sub>c</sub> with shear rate. We further check the application of the Kramers–Kronig relations on the experimental low strain amplitude OSR data finding a good agreement. Finally, the low frequency response at high strain rates was investigated with open bottom cell geometry, and instrumental limits were identified. Based on these limits, we discuss previous OSR data and findings in repulsive and attractive colloidal glasses and compare them with the current soft particle gels.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal superposition rheometry of soft core–shell microgels\",\"authors\":\"Panagiota Bogri,&nbsp;Gabriele Pagani,&nbsp;Jan Vermant,&nbsp;Joris Sprakel,&nbsp;George Petekidis\",\"doi\":\"10.1007/s00397-024-01469-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanisms of flow in suspensions of soft particles above the glass-transition volume fraction and in the jammed state were probed using orthogonal superposition rheometry (OSR). A small amplitude oscillatory shear flow is superimposed orthogonally onto a steady shear flow, which allows monitoring the viscoelastic spectra of sheared jammed core–shell microgels during flow. The characteristic crossover frequency <i>ω</i><sub>c</sub>, deduced from the viscoelastic spectrum, provides information about the shear-induced structural relaxation time, which is connected to the microscopic yielding mechanism of cage breaking. The shear rate evolution of the crossover frequency is used to achieve a superposition of all spectra and get a better insight of the flow mechanism. Despite their inherent softness, the hybrid core–shell microgels exhibit similarities with hard sphere-like flow behavior, with the main difference that for the microgels, the transition from a glassy to a jammed state introduces a volume fraction dependence of the scaling of <i>ω</i><sub>c</sub> with shear rate. We further check the application of the Kramers–Kronig relations on the experimental low strain amplitude OSR data finding a good agreement. Finally, the low frequency response at high strain rates was investigated with open bottom cell geometry, and instrumental limits were identified. Based on these limits, we discuss previous OSR data and findings in repulsive and attractive colloidal glasses and compare them with the current soft particle gels.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-024-01469-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01469-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用正交叠加流变仪(OSR)探究了软颗粒悬浮液在高于玻璃-过渡体积分数和卡塞状态下的流动机制。将小振幅振荡剪切流正交叠加到稳定剪切流上,可以监测流动过程中剪切堵塞的核壳微凝胶的粘弹性光谱。从粘弹谱推导出的特征交叉频率ωc提供了剪切诱导的结构松弛时间信息,这与笼子破裂的微观屈服机制有关。交叉频率的剪切速率演变用于实现所有频谱的叠加,从而更好地了解流动机制。尽管混合核壳微凝胶具有固有的柔软性,但其流动行为与硬球相似,主要区别在于微凝胶从玻璃态过渡到堵塞态时,ωc随剪切速率的缩放与体积分数有关。我们进一步检验了克拉默-克罗尼格关系在低应变振幅 OSR 实验数据上的应用,发现两者吻合得很好。最后,我们使用开放式底部电池几何结构研究了高应变速率下的低频响应,并确定了仪器极限。基于这些限制,我们讨论了之前在排斥性和吸引力胶体玻璃中的 OSR 数据和发现,并将它们与当前的软颗粒凝胶进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Orthogonal superposition rheometry of soft core–shell microgels

Orthogonal superposition rheometry of soft core–shell microgels

The mechanisms of flow in suspensions of soft particles above the glass-transition volume fraction and in the jammed state were probed using orthogonal superposition rheometry (OSR). A small amplitude oscillatory shear flow is superimposed orthogonally onto a steady shear flow, which allows monitoring the viscoelastic spectra of sheared jammed core–shell microgels during flow. The characteristic crossover frequency ωc, deduced from the viscoelastic spectrum, provides information about the shear-induced structural relaxation time, which is connected to the microscopic yielding mechanism of cage breaking. The shear rate evolution of the crossover frequency is used to achieve a superposition of all spectra and get a better insight of the flow mechanism. Despite their inherent softness, the hybrid core–shell microgels exhibit similarities with hard sphere-like flow behavior, with the main difference that for the microgels, the transition from a glassy to a jammed state introduces a volume fraction dependence of the scaling of ωc with shear rate. We further check the application of the Kramers–Kronig relations on the experimental low strain amplitude OSR data finding a good agreement. Finally, the low frequency response at high strain rates was investigated with open bottom cell geometry, and instrumental limits were identified. Based on these limits, we discuss previous OSR data and findings in repulsive and attractive colloidal glasses and compare them with the current soft particle gels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信