通过费曼方法计算 q 变形广义波氏-泰勒势的狄拉克方程的能谱 $$^{39}K_{2}\left( a^{3}\sum _{u}^{+}\right) $$

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amina Ghobrini, Hocine Boukabcha, Ismahane Ami
{"title":"通过费曼方法计算 q 变形广义波氏-泰勒势的狄拉克方程的能谱 $$^{39}K_{2}\\left( a^{3}\\sum _{u}^{+}\\right) $$","authors":"Amina Ghobrini,&nbsp;Hocine Boukabcha,&nbsp;Ismahane Ami","doi":"10.1007/s00894-024-06139-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The diatomic molecules of potassium <span>\\(^{\\varvec{39}}\\varvec{K}_{\\varvec{2}}\\left( \\varvec{a}^{\\varvec{3}}\\varvec{\\sum }_{\\varvec{u}}^{\\varvec{+}}\\right) \\)</span> is widely used in industrial chemicals and alternative energy. Besides that, <span>\\(^{\\varvec{39}}\\varvec{K}_{\\varvec{2}}\\left( \\varvec{a}^{\\varvec{3}}\\varvec{\\sum }_{\\varvec{u}}^{\\varvec{+}}\\right) \\)</span> is very useful for researching molecular interactions and energy states, especially in the context of quantum chemistry and spectroscopy. In the present work, a newly proposed diatomic potential model within relativistic and non-relativistic quantum mechanics has been considered, to obtain corresponding energy eigenvalues and related normalized eigenfunctions.</p><h3>Methods</h3><p>The Dirac equation has been solved for an arbitrary spin-orbit quantum number <span>\\(\\varvec{\\kappa }\\)</span> using the path integral technique with the <span>\\(\\varvec{q}\\)</span>-deformed generalized Pöschl-Teller potential <span>\\(\\varvec{(DGPT)}\\)</span>. By including a Pekeris-type approximation to handle the centrifugal factor, it was possible to obtain the spin and pseudospin-symmetric solution of the relativistic energy eigenvalues and wave equation. To assess the correctness of this work, Maple software was used to present some numerical findings for various values of <span>\\(\\varvec{n}\\)</span> and <span>\\(\\varvec{\\kappa }\\)</span>. With the constraint <span>\\(\\varvec{\\tilde{\\lambda }}\\varvec{&gt;}\\varvec{\\tilde{\\eta }+1}\\)</span>, it was shown that in the situation of pseudospin symmetry, only bound states exist with negative energy. In the non-relativistic limits, the non-relativistic ro-vibrational energy expression of the diatomic molecule is derived from the relativistic energy equation under spin symmetry. Under Varshni conditions, both vibrational and ro-vibrational energies of the <span>\\(^{\\varvec{39}}\\varvec{K}_{\\varvec{2}}\\left( \\varvec{a}^{\\varvec{3}}\\varvec{\\sum }_{\\varvec{u}}^{\\varvec{+}}\\right) \\)</span> molecule were computed and compared with the <span>\\(\\varvec{RKR}\\)</span> data. The average absolute percentage deviations from the <span>\\(\\varvec{RKR}\\)</span> data obtained for the potassium molecule are <span>\\(\\varvec{0.5018\\%}\\)</span>. This demonstrates that the <span>\\(\\varvec{(DGPT)}\\)</span> model is a very consistent model to study and characterize diatomic molecules.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy spectra with the Dirac equation of the q-deformed generalized Pöschl-Teller potential via the Feynman approach for \\\\(^{39}K_{2}\\\\left( a^{3}\\\\sum _{u}^{+}\\\\right) \\\\)\",\"authors\":\"Amina Ghobrini,&nbsp;Hocine Boukabcha,&nbsp;Ismahane Ami\",\"doi\":\"10.1007/s00894-024-06139-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>The diatomic molecules of potassium <span>\\\\(^{\\\\varvec{39}}\\\\varvec{K}_{\\\\varvec{2}}\\\\left( \\\\varvec{a}^{\\\\varvec{3}}\\\\varvec{\\\\sum }_{\\\\varvec{u}}^{\\\\varvec{+}}\\\\right) \\\\)</span> is widely used in industrial chemicals and alternative energy. Besides that, <span>\\\\(^{\\\\varvec{39}}\\\\varvec{K}_{\\\\varvec{2}}\\\\left( \\\\varvec{a}^{\\\\varvec{3}}\\\\varvec{\\\\sum }_{\\\\varvec{u}}^{\\\\varvec{+}}\\\\right) \\\\)</span> is very useful for researching molecular interactions and energy states, especially in the context of quantum chemistry and spectroscopy. In the present work, a newly proposed diatomic potential model within relativistic and non-relativistic quantum mechanics has been considered, to obtain corresponding energy eigenvalues and related normalized eigenfunctions.</p><h3>Methods</h3><p>The Dirac equation has been solved for an arbitrary spin-orbit quantum number <span>\\\\(\\\\varvec{\\\\kappa }\\\\)</span> using the path integral technique with the <span>\\\\(\\\\varvec{q}\\\\)</span>-deformed generalized Pöschl-Teller potential <span>\\\\(\\\\varvec{(DGPT)}\\\\)</span>. By including a Pekeris-type approximation to handle the centrifugal factor, it was possible to obtain the spin and pseudospin-symmetric solution of the relativistic energy eigenvalues and wave equation. To assess the correctness of this work, Maple software was used to present some numerical findings for various values of <span>\\\\(\\\\varvec{n}\\\\)</span> and <span>\\\\(\\\\varvec{\\\\kappa }\\\\)</span>. With the constraint <span>\\\\(\\\\varvec{\\\\tilde{\\\\lambda }}\\\\varvec{&gt;}\\\\varvec{\\\\tilde{\\\\eta }+1}\\\\)</span>, it was shown that in the situation of pseudospin symmetry, only bound states exist with negative energy. In the non-relativistic limits, the non-relativistic ro-vibrational energy expression of the diatomic molecule is derived from the relativistic energy equation under spin symmetry. Under Varshni conditions, both vibrational and ro-vibrational energies of the <span>\\\\(^{\\\\varvec{39}}\\\\varvec{K}_{\\\\varvec{2}}\\\\left( \\\\varvec{a}^{\\\\varvec{3}}\\\\varvec{\\\\sum }_{\\\\varvec{u}}^{\\\\varvec{+}}\\\\right) \\\\)</span> molecule were computed and compared with the <span>\\\\(\\\\varvec{RKR}\\\\)</span> data. The average absolute percentage deviations from the <span>\\\\(\\\\varvec{RKR}\\\\)</span> data obtained for the potassium molecule are <span>\\\\(\\\\varvec{0.5018\\\\%}\\\\)</span>. This demonstrates that the <span>\\\\(\\\\varvec{(DGPT)}\\\\)</span> model is a very consistent model to study and characterize diatomic molecules.</p></div>\",\"PeriodicalId\":651,\"journal\":{\"name\":\"Journal of Molecular Modeling\",\"volume\":\"30 10\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Modeling\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00894-024-06139-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06139-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景钾的二原子分子(^{\varvec{39}}_{\varvec{K}_{\varvec{2}}left( (\varvec{a}^{\varvec{3}}\varvec{sum }_{\varvec{u}}^{\varvec{+}}right)广泛应用于工业化学品和替代能源。除此之外,(^{\varvec{39}}\varvec{K}_{\varvec{2}}left( (\varvec{a}^{\varvec{3}}\varvec{sum }_{\varvec{u}}^{\varvec{+}} (right)\) 对于研究分子相互作用和能态非常有用,尤其是在量子化学和光谱学方面。本研究考虑了相对论和非相对论量子力学中新提出的二原子势模型,以获得相应的能量特征值和相关的归一化特征函数。方法利用路径积分技术求解了任意自旋轨道量子数 \(\varvec{\kappa }\) 的 Dirac 方程,并使用了 \(\varvec{q}\) 变形的广义 Pöschl-Teller 势 \(\varvec{(DGPT)}\) 。通过加入处理离心因子的 Pekeris 型近似,可以得到相对论能量特征值和波方程的自旋和伪自旋对称解。为了评估这项工作的正确性,我们使用 Maple 软件给出了不同 \(\varvec{n}\) 和 \(\varvec{\kappa }\) 值的一些数值结果。在约束条件(\(\varvec{tilde{/\lambda }}\varvec{>}\varvec{tilde{\eta }+1}\ )下,结果表明在伪自旋对称的情况下,只存在负能量的束缚态。在非相对论极限下,二原子分子的非相对论罗振能量表达式是由自旋对称下的相对论能量方程导出的。在瓦尔什尼条件下(^{\varvec{39}}\varvec{K}_{varvec{2}}\left(\varvec{a}^{varvec{3}}\varvec{sum }_{\varvec{u}}^{\varvec{+}}\right)分子的振动能和罗振能都被计算出来,并与\(\varvec{RKR}\)数据进行了比较。钾分子的数据与(\varvec{RKR}\)数据的平均绝对百分比偏差为(\varvec{0.5018\%})。这表明 \(\varvec{(DGPT)}\)模型是研究和表征二原子分子的一个非常一致的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Energy spectra with the Dirac equation of the q-deformed generalized Pöschl-Teller potential via the Feynman approach for \(^{39}K_{2}\left( a^{3}\sum _{u}^{+}\right) \)

Energy spectra with the Dirac equation of the q-deformed generalized Pöschl-Teller potential via the Feynman approach for \(^{39}K_{2}\left( a^{3}\sum _{u}^{+}\right) \)

Context

The diatomic molecules of potassium \(^{\varvec{39}}\varvec{K}_{\varvec{2}}\left( \varvec{a}^{\varvec{3}}\varvec{\sum }_{\varvec{u}}^{\varvec{+}}\right) \) is widely used in industrial chemicals and alternative energy. Besides that, \(^{\varvec{39}}\varvec{K}_{\varvec{2}}\left( \varvec{a}^{\varvec{3}}\varvec{\sum }_{\varvec{u}}^{\varvec{+}}\right) \) is very useful for researching molecular interactions and energy states, especially in the context of quantum chemistry and spectroscopy. In the present work, a newly proposed diatomic potential model within relativistic and non-relativistic quantum mechanics has been considered, to obtain corresponding energy eigenvalues and related normalized eigenfunctions.

Methods

The Dirac equation has been solved for an arbitrary spin-orbit quantum number \(\varvec{\kappa }\) using the path integral technique with the \(\varvec{q}\)-deformed generalized Pöschl-Teller potential \(\varvec{(DGPT)}\). By including a Pekeris-type approximation to handle the centrifugal factor, it was possible to obtain the spin and pseudospin-symmetric solution of the relativistic energy eigenvalues and wave equation. To assess the correctness of this work, Maple software was used to present some numerical findings for various values of \(\varvec{n}\) and \(\varvec{\kappa }\). With the constraint \(\varvec{\tilde{\lambda }}\varvec{>}\varvec{\tilde{\eta }+1}\), it was shown that in the situation of pseudospin symmetry, only bound states exist with negative energy. In the non-relativistic limits, the non-relativistic ro-vibrational energy expression of the diatomic molecule is derived from the relativistic energy equation under spin symmetry. Under Varshni conditions, both vibrational and ro-vibrational energies of the \(^{\varvec{39}}\varvec{K}_{\varvec{2}}\left( \varvec{a}^{\varvec{3}}\varvec{\sum }_{\varvec{u}}^{\varvec{+}}\right) \) molecule were computed and compared with the \(\varvec{RKR}\) data. The average absolute percentage deviations from the \(\varvec{RKR}\) data obtained for the potassium molecule are \(\varvec{0.5018\%}\). This demonstrates that the \(\varvec{(DGPT)}\) model is a very consistent model to study and characterize diatomic molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信